Learning to Segment Using Machine-Learned Penalized Logistic Models

被引:0
|
作者
Yue, Yong [1 ]
Tagare, Hemant D. [2 ]
机构
[1] Yale Univ, Sch Med, Dept Diagnost Radiol, 333 Cedar St, New Haven, CT 06511 USA
[2] Yale Univ, Sch Med, Dept Biomed Engn, Dept Diagnost Radiol, New Haven, CT 06520 USA
关键词
IMAGE SEGMENTATION; ULTRASOUND IMAGES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Classical maximum-a-posteriori (MAP) segmentation uses generative models for images. However creating tractable generative models can be difficult for complex images. Moreover; generative models require auxiliary parameters to be included in the maximization, which makes the maximization more complicated. This paper proposes an alternative to the MAP approach: using a penalized logistic model to directly model the segmentation posterior This approach has two advantages: (1) It requires fewer auxiliary parameters, and (2) it provides a standard way of incorporating powerful machine-learning methods into segmentation so that complex image phenomenon can be learned easily from a training set. The technique is used to segment cardiac ultrasound images sequences which have substantial spatio-temporal contrast variation that is cumbersome to model. Experimental results show that the method gives accurate segmentations of the endocardium in spite of the contrast variation.
引用
收藏
页码:121 / +
页数:2
相关论文
共 50 条
  • [21] Predicting subcellular localization of proteins using machine-learned classifiers
    Lu, Z
    Szafron, D
    Greiner, R
    Lu, P
    Wishart, DS
    Poulin, B
    Anvik, J
    Macdonell, C
    Eisner, R
    [J]. BIOINFORMATICS, 2004, 20 (04) : 547 - 556
  • [22] Forecasting influenza activity using machine-learned mobility map
    Srinivasan Venkatramanan
    Adam Sadilek
    Arindam Fadikar
    Christopher L. Barrett
    Matthew Biggerstaff
    Jiangzhuo Chen
    Xerxes Dotiwalla
    Paul Eastham
    Bryant Gipson
    Dave Higdon
    Onur Kucuktunc
    Allison Lieber
    Bryan L. Lewis
    Zane Reynolds
    Anil K. Vullikanti
    Lijing Wang
    Madhav Marathe
    [J]. Nature Communications, 12
  • [23] Machine-Learned Premise Selection for Lean
    Piotrowski, Bartosz
    Mir, Ramon Fernandez
    Ayers, Edward
    [J]. AUTOMATED REASONING WITH ANALYTIC TABLEAUX AND RELATED METHODS, TABLEAUX 2023, 2023, 14278 : 175 - 186
  • [24] Range Estimation using Machine-learned Algorithms for Passive Sensors
    Morris, Clint
    Zutty, Jason
    [J]. SYNTHETIC DATA FOR ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING: TOOLS, TECHNIQUES, AND APPLICATIONS II, 2024, 13035
  • [25] Understanding machine-learned density functionals
    Li, Li
    Snyder, John C.
    Pelaschier, Isabelle M.
    Huang, Jessica
    Niranjan, Uma-Naresh
    Duncan, Paul
    Rupp, Matthias
    Mueller, Klaus-Robert
    Burke, Kieron
    [J]. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2016, 116 (11) : 819 - 833
  • [26] Lightning Distance Estimation Using LF Lightning Radio Signals via Analytical and Machine-Learned Models
    de Sa, Andre L. Antunes
    Marshall, Robert A.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (08): : 5892 - 5907
  • [27] Integration of machine-learned surrogate models in first principles inorganic material design
    Janet, Jon Paul
    Nandy, Aditya
    Duan, Chenru
    Kulik, Heather
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [28] Minimum standards for evaluating machine-learned models of high-dimensional data
    Chen, Brian H.
    [J]. FRONTIERS IN AGING, 2022, 3
  • [29] Towards Automatically Generating Security Analyses from Machine-Learned Library Models
    Kober, Maria
    Arzt, Steven
    [J]. COMPUTER SECURITY - ESORICS 2021, PT II, 2021, 12973 : 752 - 758
  • [30] Osteoporosis Prediction Using Machine-Learned Optical Bone Densitometry Data
    Miura, Kaname
    Tanaka, Shigeo M.
    Chotipanich, Chanisa
    Chobpenthai, Thanapon
    Jantarato, Attapon
    Khantachawana, Anak
    [J]. ANNALS OF BIOMEDICAL ENGINEERING, 2024, 52 (02) : 396 - 405