Integration of machine-learned surrogate models in first principles inorganic material design

被引:0
|
作者
Janet, Jon Paul [1 ]
Nandy, Aditya [1 ,2 ]
Duan, Chenru [1 ,2 ]
Kulik, Heather [1 ]
机构
[1] MIT, Chem Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Chem, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
495
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Production Deployment of Machine-Learned Rotorcraft Surrogate Models on HPC
    Brewer, Wesley
    Martinez, Daniel
    Boyer, Mathew
    Jude, Dylan
    Wissink, Andy
    Parsons, Ben
    Yin, Junqi
    Anantharaj, Valentine
    [J]. PROCEEDINGS OF THE WORKSHOP ON MACHINE LEARNING IN HIGH PERFORMANCE COMPUTING ENVIRONMENTS (MLHPC 2021), 2021, : 21 - 32
  • [2] Machine-learned multi-system surrogate models for materials prediction
    Nyshadham, Chandramouli
    Rupp, Matthias
    Bekker, Brayden
    Shapeev, Alexander, V
    Mueller, Tim
    Rosenbrock, Conrad W.
    Csanyi, Gabor
    Wingate, David W.
    Hart, Gus L. W.
    [J]. NPJ COMPUTATIONAL MATERIALS, 2019, 5 (1)
  • [3] Predictions of Steady and Unsteady Flows using Machine-learned Surrogate Models
    Bhushan, Shanti
    Burgreen, Greg W.
    Bowman, Joshua L.
    Dettwiller, Ian D.
    Brewer, Wesley
    [J]. 2020 IEEE/ACM WORKSHOP ON MACHINE LEARNING IN HIGH PERFORMANCE COMPUTING ENVIRONMENTS (MLHPC 2020) AND WORKSHOP ON ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR SCIENTIFIC APPLICATIONS (AI4S 2020), 2020, : 80 - 87
  • [4] Machine-learned multi-system surrogate models for materials prediction
    Chandramouli Nyshadham
    Matthias Rupp
    Brayden Bekker
    Alexander V. Shapeev
    Tim Mueller
    Conrad W. Rosenbrock
    Gábor Csányi
    David W. Wingate
    Gus L. W. Hart
    [J]. npj Computational Materials, 5
  • [5] Efficient Global Structure Optimization with a Machine-Learned Surrogate Model
    Bisbo, Malthe K.
    Hammer, Bjork
    [J]. PHYSICAL REVIEW LETTERS, 2020, 124 (08)
  • [6] Integration of machine learning and first principles models
    Rajulapati, Lokesh
    Chinta, Sivadurgaprasad
    Shyamala, Bala
    Rengaswamy, Raghunathan
    [J]. AICHE JOURNAL, 2022, 68 (06)
  • [7] Machine-Learned Coarse-Grained Models
    Bejagam, Karteek K.
    Singh, Samrendra
    An, Yaxin
    Deshmukh, Sanket A.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (16): : 4667 - 4672
  • [8] Bayesian uncertainty quantification for machine-learned models in physics
    Gal, Yarin
    Koumoutsakos, Petros
    Lanusse, Francois
    Louppe, Gilles
    Papadimitriou, Costas
    [J]. NATURE REVIEWS PHYSICS, 2022, 4 (09) : 573 - 577
  • [9] Bayesian uncertainty quantification for machine-learned models in physics
    Yarin Gal
    Petros Koumoutsakos
    Francois Lanusse
    Gilles Louppe
    Costas Papadimitriou
    [J]. Nature Reviews Physics, 2022, 4 : 573 - 577
  • [10] Problems in the deployment of machine-learned models in health care
    Cohen, Joseph Paul
    Cao, Tianshi
    Viviano, Joseph D.
    Huang, Chin-Wei
    Fralick, Michael
    Ghassemi, Marzyeh
    Mamdani, Muhammad
    Greiner, Russell
    Bengio, Yoshua
    [J]. CANADIAN MEDICAL ASSOCIATION JOURNAL, 2021, 193 (35) : E1391 - E1394