Integration of machine-learned surrogate models in first principles inorganic material design

被引:0
|
作者
Janet, Jon Paul [1 ]
Nandy, Aditya [1 ,2 ]
Duan, Chenru [1 ,2 ]
Kulik, Heather [1 ]
机构
[1] MIT, Chem Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Chem, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
495
引用
收藏
页数:2
相关论文
共 50 条
  • [31] Surface segregation machine-learned with inexpensive numerical fingerprint for the design of alloy catalysts
    Shin, Dongjae
    Choi, Geonyeong
    Hong, Charmgil
    Han, Jeong Woo
    [J]. MOLECULAR CATALYSIS, 2023, 541
  • [32] GENERALIZATION OF MACHINE-LEARNED TURBULENT HEAT FLUX MODELS APPLIED TO FILM COOLING FLOWS
    Milani, Pedro M.
    Ling, Julia
    Eaton, John K.
    [J]. PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, 2019, VOL 5A, 2019,
  • [33] Transfer learning of hyperparameters for fast construction of anisotropic GPR models: design and application to the machine-learned force field FFLUX
    Isamura, Bienfait K.
    Popelier, Paul L. A.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (36) : 23677 - 23691
  • [34] Generalization of Machine-Learned Turbulent Heat Flux Models Applied to Film Cooling Flows
    Milani, Pedro M.
    Ling, Julia
    Eaton, John K.
    [J]. JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 2020, 142 (01):
  • [35] Machine-Learned Corrections to Mean-Field Microkinetic Models at the Fast Diffusion Limit
    Tian, Huijie
    Rangarajan, Srinivas
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (37): : 20275 - 20285
  • [36] Modeling mesoscale energy localization in shocked HMX, Part II: training machine-learned surrogate models for void shape and void–void interaction effects
    S. Roy
    N. K. Rai
    O. Sen
    D. B. Hardin
    A. S. Diggs
    H. S. Udaykumar
    [J]. Shock Waves, 2020, 30 : 349 - 371
  • [37] Co-optimized machine-learned manifold models for large eddy simulation of turbulent combustion
    Perry, Bruce A.
    de Frahan, Marc T. Henry
    Yellapantula, Shashank
    [J]. COMBUSTION AND FLAME, 2022, 244
  • [38] QM/MM METHODS FOR CRYSTALLINE DEFECTS. PART 3: MACHINE-LEARNED MM MODELS
    Chen, Huajie
    Ortner, Christoph
    Wang, Yangshuai
    [J]. MULTISCALE MODELING & SIMULATION, 2022, 20 (04): : 1490 - 1518
  • [39] Establishing the Contaminating Effect of Metadata Feature Inclusion in Machine-Learned Network Intrusion Detection Models
    D'hooge, Laurens
    Verkerken, Miel
    Volckaert, Bruno
    Wauters, Tim
    De Turck, Filip
    [J]. DETECTION OF INTRUSIONS AND MALWARE, AND VULNERABILITY ASSESSMENT, DIMVA 2022, 2022, 13358 : 23 - 41
  • [40] Modeling mesoscale energy localization in shocked HMX, Part II: training machine-learned surrogate models for void shape and void-void interaction effects
    Roy, S.
    Rai, N. K.
    Sen, O.
    Hardin, D. B.
    Diggs, A. S.
    Udaykumar, H. S.
    [J]. SHOCK WAVES, 2020, 30 (04) : 349 - 371