Integration of machine-learned surrogate models in first principles inorganic material design

被引:0
|
作者
Janet, Jon Paul [1 ]
Nandy, Aditya [1 ,2 ]
Duan, Chenru [1 ,2 ]
Kulik, Heather [1 ]
机构
[1] MIT, Chem Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Chem, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
495
引用
收藏
页数:2
相关论文
共 50 条
  • [41] Machine-learned Image Analysis Models for Classifying Liver Fibrosis Stage from Magnetic Resonance Images
    Pierre, Timothy G. St.
    House, Michael J.
    Mian, Ajmal
    Bangma, Sander
    Burgess, Gary
    Standish, Richard A.
    Casey, Stephen
    Hornsey, Emma
    Angus, Peter W.
    [J]. HEPATOLOGY, 2015, 62 : 607A - 607A
  • [42] Lightning Distance Estimation Using LF Lightning Radio Signals via Analytical and Machine-Learned Models
    de Sa, Andre L. Antunes
    Marshall, Robert A.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (08): : 5892 - 5907
  • [43] Efficient high-dimensional variational data assimilation with machine-learned reduced-order models
    Maulik, Romit
    Rao, Vishwas
    Wang, Jiali
    Mengaldo, Gianmarco
    Constantinescu, Emil
    Lusch, Bethany
    Balaprakash, Prasanna
    Foster, Ian
    Kotamarthi, Rao
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2022, 15 (08) : 3433 - 3445
  • [44] The integration of instructional systems design models and constructivistic design principles
    SANNE DIJKSTRA
    [J]. Instructional Science, 1997, 25 : 1 - 13
  • [45] The integration of instructional systems design models and constructivistic design principles
    Dijkstra, S
    [J]. INSTRUCTIONAL SCIENCE, 1997, 25 (01) : 1 - 13
  • [46] The Data Calculator*: Data Structure Design and Cost Synthesis from First Principles and Learned Cost Models
    Idreos, Stratos
    Zoumpatianos, Kostas
    Hentschel, Brian
    Kester, Michael S.
    Guo, Demi
    [J]. SIGMOD'18: PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2018, : 535 - 550
  • [47] Calibrating hypersonic turbulence flow models with the HIFiRE-1 experiment using data-driven machine-learned models
    Chowdhary, Kenny
    Hoang, Chi
    Lee, Kookjin
    Ray, Jaideep
    Weirs, V. G.
    Carnes, Brian
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 401
  • [48] Beyond RMSE: Do Machine-Learned Models of Road User Interaction Produce Human-Like Behavior?
    Srinivasan, Aravinda Ramakrishnan
    Lin, Yi-Shin
    Antonello, Morris
    Knittel, Anthony
    Hasan, Mohamed
    Hawasly, Majd
    Redford, John
    Ramamoorthy, Subramanian
    Leonetti, Matteo
    Billington, Jac
    Romano, Richard
    Markkula, Gustav
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (07) : 7166 - 7177
  • [49] Design of a Hyper-Casual Futsal Mobile Game Using a Machine-Learned AI Agent-Player
    An, Hyeyoung
    Kim, Jungyoon
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (04):
  • [50] Experimental exploration of ErB2 and SHAP analysis on a machine-learned model of magnetocaloric materials for materials design
    Terashima, Kensei
    de Castro, Pedro Baptista
    Saito, Akiko Takahashi
    Yamamoto, Takafumi D.
    Matsumoto, Ryo
    Takeya, Hiroyuki
    Takano, Yoshihiko
    [J]. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS-METHODS, 2023, 3 (01):