Machine-learned multi-system surrogate models for materials prediction

被引:106
|
作者
Nyshadham, Chandramouli [1 ]
Rupp, Matthias [2 ,7 ]
Bekker, Brayden [1 ]
Shapeev, Alexander, V [3 ]
Mueller, Tim [4 ]
Rosenbrock, Conrad W. [1 ]
Csanyi, Gabor [5 ]
Wingate, David W. [6 ]
Hart, Gus L. W. [1 ]
机构
[1] Brigham Young Univ, Dept Phys & Astron, Provo, UT 84602 USA
[2] Max Planck Gesell, Fritz Haber Inst, Faradayweg 4-6, D-14195 Berlin, Germany
[3] Skolkovo Innovat Ctr, Skolkovo Inst Sci & Technol, Bldg 3, Moscow 143026, Russia
[4] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA
[5] Univ Cambridge, Engn Lab, Trumpington St, Cambridge CB2 1PZ, England
[6] Brigham Young Univ, Comp Sci Dept, Provo, UT 84602 USA
[7] Citrine Informat, 702 Marshall St, Redwood City, CA 94063 USA
基金
俄罗斯科学基金会; 美国国家科学基金会;
关键词
TOTAL-ENERGY CALCULATIONS; ULTRASOFT PSEUDOPOTENTIALS; WAVE;
D O I
10.1038/s41524-019-0189-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Surrogate machine-learning models are transforming computational materials science by predicting properties of materials with the accuracy of ab initio methods at a fraction of the computational cost. We demonstrate surrogate models that simultaneously interpolate energies of different materials on a dataset of 10 binary alloys (AgCu, AlFe, AlMg, AlNi, AlTi, CoNi, CuFe, CuNi, FeV, and NbNi) with 10 different species and all possible fcc, bcc, and hcp structures up to eight atoms in the unit cell, 15,950 structures in total. We find that the deviation of prediction errors when increasing the number of simultaneously modeled alloys is <1 meV/atom. Several state-of-the-art materials representations and learning algorithms were found to qualitatively agree on the prediction errors of formation enthalpy with relative errors of <2.5% for all systems.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Machine-learned multi-system surrogate models for materials prediction
    Chandramouli Nyshadham
    Matthias Rupp
    Brayden Bekker
    Alexander V. Shapeev
    Tim Mueller
    Conrad W. Rosenbrock
    Gábor Csányi
    David W. Wingate
    Gus L. W. Hart
    [J]. npj Computational Materials, 5
  • [2] Production Deployment of Machine-Learned Rotorcraft Surrogate Models on HPC
    Brewer, Wesley
    Martinez, Daniel
    Boyer, Mathew
    Jude, Dylan
    Wissink, Andy
    Parsons, Ben
    Yin, Junqi
    Anantharaj, Valentine
    [J]. PROCEEDINGS OF THE WORKSHOP ON MACHINE LEARNING IN HIGH PERFORMANCE COMPUTING ENVIRONMENTS (MLHPC 2021), 2021, : 21 - 32
  • [3] Predictions of Steady and Unsteady Flows using Machine-learned Surrogate Models
    Bhushan, Shanti
    Burgreen, Greg W.
    Bowman, Joshua L.
    Dettwiller, Ian D.
    Brewer, Wesley
    [J]. 2020 IEEE/ACM WORKSHOP ON MACHINE LEARNING IN HIGH PERFORMANCE COMPUTING ENVIRONMENTS (MLHPC 2020) AND WORKSHOP ON ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR SCIENTIFIC APPLICATIONS (AI4S 2020), 2020, : 80 - 87
  • [4] Integration of machine-learned surrogate models in first principles inorganic material design
    Janet, Jon Paul
    Nandy, Aditya
    Duan, Chenru
    Kulik, Heather
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [5] Effective hospital readmission prediction models using machine-learned features
    Sacha Davis
    Jin Zhang
    Ilbin Lee
    Mostafa Rezaei
    Russell Greiner
    Finlay A. McAlister
    Raj Padwal
    [J]. BMC Health Services Research, 22
  • [6] Effective hospital readmission prediction models using machine-learned features
    Davis, Sacha
    Zhang, Jin
    Lee, Ilbin
    Rezaei, Mostafa
    Greiner, Russell
    McAlister, Finlay A.
    Padwal, Raj
    [J]. BMC HEALTH SERVICES RESEARCH, 2022, 22 (01)
  • [7] Machine-learned prediction of the electronic fields in a crystal
    Teh, Ying Shi
    Ghosh, Swarnava
    Bhattacharya, Kaushik
    [J]. MECHANICS OF MATERIALS, 2021, 163
  • [8] Toward Stable, General Machine-Learned Models of the Atmospheric Chemical System
    Kelp, Makoto M.
    Jacob, Daniel J.
    Kutz, J. Nathan
    Marshall, Julian D.
    Tessum, Christopher W.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (23)
  • [9] Efficient Global Structure Optimization with a Machine-Learned Surrogate Model
    Bisbo, Malthe K.
    Hammer, Bjork
    [J]. PHYSICAL REVIEW LETTERS, 2020, 124 (08)
  • [10] Machine-Learned Coarse-Grained Models
    Bejagam, Karteek K.
    Singh, Samrendra
    An, Yaxin
    Deshmukh, Sanket A.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (16): : 4667 - 4672