Database of NIH grants using machine-learned categories and graphical clustering

被引:0
|
作者
Edmund M Talley
David Newman
David Mimno
Bruce W Herr
Hanna M Wallach
Gully A P C Burns
A G Miriam Leenders
Andrew McCallum
机构
[1] National Institute of Neurological Disorders and Stroke,
[2] University of California,undefined
[3] Irvine,undefined
[4] University of Massachusetts,undefined
[5] Amherst,undefined
[6] ChalkLabs,undefined
[7] Information Sciences Institute,undefined
[8] University of Southern California,undefined
[9] Present address: Princeton University,undefined
[10] Princeton,undefined
[11] New Jersey,undefined
[12] USA.,undefined
来源
Nature Methods | 2011年 / 8卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:443 / 444
页数:1
相关论文
共 50 条
  • [1] Database of NIH grants using machine-learned categories and graphical clustering
    Talley, Edmund M.
    Newman, David
    Mimno, David
    Herr, Bruce W., II
    Wallach, Hanna M.
    Burns, Gully A. P. C.
    Leenders, A. G. Miriam
    McCallum, Andrew
    [J]. NATURE METHODS, 2011, 8 (06) : 443 - 444
  • [2] Charge and Exciton Transfer Simulations Using Machine-Learned Hamiltonians
    Kraemer, Mila
    Dohmen, Philipp M.
    Xie, Weiwei
    Holub, Daniel
    Christensen, Anders S.
    Elstner, Marcus
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2020, 16 (07) : 4061 - 4070
  • [3] Learning to Segment Using Machine-Learned Penalized Logistic Models
    Yue, Yong
    Tagare, Hemant D.
    [J]. 2009 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPR WORKSHOPS 2009), VOLS 1 AND 2, 2009, : 121 - +
  • [4] Forecasting influenza activity using machine-learned mobility map
    Venkatramanan, Srinivasan
    Sadilek, Adam
    Fadikar, Arindam
    Barrett, Christopher L.
    Biggerstaff, Matthew
    Chen, Jiangzhuo
    Dotiwalla, Xerxes
    Eastham, Paul
    Gipson, Bryant
    Higdon, Dave
    Kucuktunc, Onur
    Lieber, Allison
    Lewis, Bryan L.
    Reynolds, Zane
    Vullikanti, Anil K.
    Wang, Lijing
    Marathe, Madhav
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [5] Predicting subcellular localization of proteins using machine-learned classifiers
    Lu, Z
    Szafron, D
    Greiner, R
    Lu, P
    Wishart, DS
    Poulin, B
    Anvik, J
    Macdonell, C
    Eisner, R
    [J]. BIOINFORMATICS, 2004, 20 (04) : 547 - 556
  • [6] Forecasting influenza activity using machine-learned mobility map
    Srinivasan Venkatramanan
    Adam Sadilek
    Arindam Fadikar
    Christopher L. Barrett
    Matthew Biggerstaff
    Jiangzhuo Chen
    Xerxes Dotiwalla
    Paul Eastham
    Bryant Gipson
    Dave Higdon
    Onur Kucuktunc
    Allison Lieber
    Bryan L. Lewis
    Zane Reynolds
    Anil K. Vullikanti
    Lijing Wang
    Madhav Marathe
    [J]. Nature Communications, 12
  • [7] Range Estimation using Machine-learned Algorithms for Passive Sensors
    Morris, Clint
    Zutty, Jason
    [J]. SYNTHETIC DATA FOR ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING: TOOLS, TECHNIQUES, AND APPLICATIONS II, 2024, 13035
  • [8] Osteoporosis Prediction Using Machine-Learned Optical Bone Densitometry Data
    Miura, Kaname
    Tanaka, Shigeo M.
    Chotipanich, Chanisa
    Chobpenthai, Thanapon
    Jantarato, Attapon
    Khantachawana, Anak
    [J]. ANNALS OF BIOMEDICAL ENGINEERING, 2024, 52 (02) : 396 - 405
  • [9] Exploring Configurations of Nanocrystal Ligands Using Machine-Learned Force Fields
    Sowa, Jakub K.
    Roberts, Sean T.
    Rossky, Peter J.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, 14 (32): : 7215 - 7222
  • [10] An OWL ontology representation for machine-learned functions using linked data
    Xu, Jingyuan
    Wang, Hao
    Trimbach, Henry
    [J]. 2016 IEEE INTERNATIONAL CONGRESS ON BIG DATA - BIGDATA CONGRESS 2016, 2016, : 319 - 322