A ZnO nanorod based 64° YX LiNbO3 surface acoustic wave CO sensor

被引:0
|
作者
Sadek, A. Z. [1 ]
Wlodarski, W. [1 ]
Kalantar-Zadeh, K. [1 ]
Li, Y. [2 ]
Yu, W. [2 ]
Li, X. [2 ]
Yu, X. [2 ]
机构
[1] RMIT Univ, Sch Elect & Comp Engn, Sensor Technol Lab, Melbourne, Vic, Australia
[2] Chinese Acad Sci, Shanghai Inst Ceram, Shanghai, Peoples R China
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Zinc oxide (ZnO) nanorod based surface acoustic wave (SAW) gas sensor has been developed. ZnO nanorods were deposited onto a layered ZnO/64 degrees YX LiNbO3 substrate using a liquid solution method. Micro-characterization results reveal that the diameter and area density of ZnO nanorods are around 100 nm and 107 cm(-2), respectively. The sensor was exposed to different concentrations of CO in synthetic air. The sensor response at operating temperatures between 200 degrees C and 300 degrees C was examined. The study showed that the sensor responded with highest frequency shift at 265 degrees C. At this temperature, stable base-line and fast response and recovery were observed. The developed sensor is promising for industrial applications.
引用
收藏
页码:706 / +
页数:2
相关论文
共 50 条
  • [1] A ZnO nanorod based layered ZnO/64° YX LiNbO3SAW hydrogen gas sensor
    Sadek, A. Z.
    Wlodarski, W.
    Li, Yx
    Yu, W.
    Li, X.
    Yu, X.
    Kalantar-Zadeh, K.
    [J]. THIN SOLID FILMS, 2007, 515 (24) : 8705 - 8708
  • [2] Camphor Sulfonic Acid Doped Polyaniline/Diamond Nanofibers Based ZnO/64° YX LiNbO3 Surface Acoustic Wave H2 Gas Sensor
    Arsat, R.
    Tan, J.
    Sadek, A. Z.
    Shin, K.
    Ahn, D. S.
    Yoon, C. S.
    Kalantar-Zadeh, K.
    Wlodarski, W.
    [J]. SENSOR LETTERS, 2008, 6 (06) : 947 - 950
  • [3] Surface acoustic wave based pressure sensor with ground shielding over cavity on 41° YX LiNbO3
    Lee, Keekeun
    Wang, Wen
    Kim, Geunyoung
    Yang, Sangsik
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2006, 45 (07): : 5974 - 5980
  • [4] Comparison of ZnO/64° LiNbO3 and ZnO/36° LiTaO3 surface acoustic wave devices for sensing application
    Kalantar-Zadeh, K.
    Powell, D. A.
    Sadek, A. Z.
    Wlodarski, W.
    Yang, Q. B.
    Li, Y. X.
    [J]. SENSOR LETTERS, 2006, 4 (02) : 135 - 138
  • [5] The Experimental Registration of the Evanescent Acoustic Wave in YX LiNbO3 Plate
    Smirnov, Andrey
    Zaitsev, Boris
    Teplykh, Andrey
    Nedospasov, Ilya
    Golovanov, Egor
    Qian, Zheng-hua
    Wang, Bin
    Kuznetsova, Iren
    [J]. SENSORS, 2021, 21 (06)
  • [6] Temperature dependence of surface acoustic wave filter on ZnO/LiNbO3
    Yamamoto, H.
    Saiga, N.
    Nishimori, K.
    [J]. Shinku/Journal of the Vacuum Society of Japan, 2001, 44 (03) : 322 - 325
  • [7] Graphene/LiNbO3 surface acoustic wave device based relative humidity sensor
    Guo, Y. J.
    Zhang, J.
    Zhao, C.
    Hu, P. A.
    Zu, X. T.
    Fu, Y. Q.
    [J]. OPTIK, 2014, 125 (19): : 5800 - 5802
  • [8] UV detection based on a ZnO/LiNbO3 layered surface acoustic wave oscillator circuit
    Wei, Ching-Liang
    Chen, Ying-Chung
    Fu, Jiun-Lin
    Kao, Kuo-Sheng
    Cheng, Da-Long
    Cheng, Chien-Chuan
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2009, 27 (06): : 1343 - 1346
  • [9] Pseudo surface acoustic wave dual delay line on 41°YX LiNbO3 for liquid sensors
    Hechner, J
    Soluch, W
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2005, 111 : 436 - 440
  • [10] Wireless love-wave chemical sensor on 41° YX LiNbO3
    Wang, W.
    Kim, T.
    Lee, K.
    Yang, S.
    [J]. ELECTRONICS LETTERS, 2007, 43 (22) : 1239 - 1241