Graphene/LiNbO3 surface acoustic wave device based relative humidity sensor

被引:18
|
作者
Guo, Y. J. [1 ,2 ]
Zhang, J. [2 ,3 ]
Zhao, C. [2 ]
Hu, P. A. [3 ]
Zu, X. T. [1 ]
Fu, Y. Q. [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Phys Elect, Chengdu 610054, Peoples R China
[2] Univ West Scotland, Scottish Univ Phys Alliance SUPA, Thin Film Ctr, Paisley PA1 2BE, Renfrew, Scotland
[3] Harbin Inst Technol, Key Lab Microsyst & Microstruct, Harbin 150080, Peoples R China
来源
OPTIK | 2014年 / 125卷 / 19期
基金
中国国家自然科学基金;
关键词
Graphene; LiNbO3 SAW device; Relative humidity; TCF; FILM;
D O I
10.1016/j.ijleo.2014.06.090
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This study described relative humidity (RH) sensing using a graphene/128 degrees YX LiNbO3 surface acoustic wave (SAW) device. The resonant frequency of the device decreased in a two-stage manner as the RH increased. For a low RH range (RH < 50%), a frequency downshift of 1.38 kHz per 1% RH change was observed. This was attributed to mass loading of the SAW propagation surface due to the adsorption of water molecules by the graphene surface. For a high RH range (RH >50%), a frequency downshift of 2.6 kHz per 1% RH change was obtained, which was due to the change in elastic grapheme properties. The mass loading effect of the water layer was less effective at high temperature, resulting in a lower temperature coefficient of resonant frequency (TCF). (C) 2014 Elsevier GmbH. All rights reserved.
引用
收藏
页码:5800 / 5802
页数:3
相关论文
共 50 条
  • [1] Finite element Modeling of hexagonal surface acoustic wave device in LiNbO3
    Sankaranarayanan, Subramanian K. R. S.
    Bhethanabotla, Venkat R.
    Joseph, Babu
    [J]. 2007 IEEE SENSORS, VOLS 1-3, 2007, : 353 - 356
  • [2] Wireless Surface Acoustic Wave Pressure and Temperature Sensor With Unique Identification Based on LiNbO3
    Binder, Alfred
    Bruckner, Gudrun
    Schobernig, Norbert
    Schmitt, Daniel
    [J]. IEEE SENSORS JOURNAL, 2013, 13 (05) : 1801 - 1805
  • [3] A ZnO nanorod based 64° YX LiNbO3 surface acoustic wave CO sensor
    Sadek, A. Z.
    Wlodarski, W.
    Kalantar-Zadeh, K.
    Li, Y.
    Yu, W.
    Li, X.
    Yu, X.
    [J]. 2006 IEEE SENSORS, VOLS 1-3, 2006, : 706 - +
  • [4] Finite-Element Modeling of a Hexagonal Surface Acoustic Wave Device Based on LiNbO3 Substrate
    Sankaranarayanan, Subramanian K. R. S.
    Bhethanabotla, Venkat R.
    [J]. IEEE SENSORS JOURNAL, 2009, 9 (04) : 329 - 339
  • [5] A new LiNbO3 surface acoustic wave transducer
    Nosek, J
    Zelenka, J
    Bigler, E
    Daniau, W
    [J]. FERROELECTRICS, 1999, 224 (1-4) : 589 - 596
  • [6] Flexible surface acoustic wave strain sensor based on single crystalline LiNbO3 thin film
    Xu, Hongsheng
    Dong, Shurong
    Xuan, Weipeng
    Farooq, Umar
    Huang, Shuyi
    Li, Menglu
    Wu, Ting
    Jin, Hao
    Wang, Xiaozhi
    Luo, Jikui
    [J]. APPLIED PHYSICS LETTERS, 2018, 112 (09)
  • [7] Novel Surface Acoustic Wave Temperature-Strain Sensor Based on LiNbO3 for Structural Health Monitoring
    Li, Xiangrong
    Tan, Qiulin
    Qin, Li
    Yan, Xiawen
    Liang, Xiaorui
    [J]. MICROMACHINES, 2022, 13 (06)
  • [8] Surface acoustic wave based pressure sensor with ground shielding over cavity on 41° YX LiNbO3
    Lee, Keekeun
    Wang, Wen
    Kim, Geunyoung
    Yang, Sangsik
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2006, 45 (07): : 5974 - 5980
  • [9] Simulation of characteristics of a LiNbO3/diamond surface acoustic wave
    Shikata, S
    Hachigo, A
    Nakahata, H
    Narita, M
    [J]. IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2004, 51 (10) : 1308 - 1313
  • [10] Nonreciprocal propagation of surface acoustic wave in Ni/LiNbO3
    Sasaki, R.
    Nii, Y.
    Iguchi, Y.
    Onose, Y.
    [J]. PHYSICAL REVIEW B, 2017, 95 (02)