A benchmark for RNA-seq quantification pipelines

被引:114
|
作者
Teng, Mingxiang [1 ,2 ,9 ]
Love, Michael I. [1 ,2 ]
Davis, Carrie A. [3 ]
Djebali, Sarah [4 ,5 ]
Dobin, Alexander [3 ]
Graveley, Brenton R. [6 ]
Li, Sheng [7 ]
Mason, Christopher E. [7 ]
Olson, Sara [6 ]
Pervouchine, Dmitri [4 ,5 ]
Sloan, Cricket A. [8 ]
Wei, Xintao [6 ]
Zhan, Lijun [6 ]
Irizarry, Rafael A. [1 ,2 ]
机构
[1] Dana Farber Canc Inst, Dept Biostat & Computat Biol, 450 Brookline Ave, Boston, MA 02215 USA
[2] Harvard Univ, TH Chan Sch Publ Hlth, Dept Biostat, 677 Huntington Ave, Boston, MA 02115 USA
[3] Cold Spring Harbor Lab, Funct Genom Grp, 1 Bungtown Rd, Cold Spring Harbor, NY 11724 USA
[4] Ctr Genom Regulat CRG, Bioinformat & Genom Programme, Doctor Aiguader 88, Barcelona 08003, Spain
[5] UPF, Doctor Aiguader 88, Barcelona 08003, Spain
[6] UConn Hlth Ctr, Inst Syst Genom, Dept Genet & Genome Sci, Farmington, CT 06030 USA
[7] Weill Cornell Med Coll, Dept Physiol & Biophys, New York, NY USA
[8] Stanford Univ, Dept Genet, 300 Pasteur Dr, Stanford, CA 94305 USA
[9] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150006, Peoples R China
来源
GENOME BIOLOGY | 2016年 / 17卷
关键词
GENE-EXPRESSION; CELL; TRANSCRIPTOMES; NORMALIZATION; ABUNDANCE; ALIGNMENT;
D O I
10.1186/s13059-016-0940-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Obtaining RNA-seq measurements involves a complex data analytical process with a large number of competing algorithms as options. There is much debate about which of these methods provides the best approach. Unfortunately, it is currently difficult to evaluate their performance due in part to a lack of sensitive assessment metrics. We present a series of statistical summaries and plots to evaluate the performance in terms of specificity and sensitivity, available as a R/Bioconductor package (http://bioconductor.org/packages/rnaseqcomp). Using two independent datasets, we assessed seven competing pipelines. Performance was generally poor, with two methods clearly underperforming and RSEM slightly outperforming the rest.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Near-optimal probabilistic RNA-seq quantification
    Nicolas L Bray
    Harold Pimentel
    Páll Melsted
    Lior Pachter
    Nature Biotechnology, 2016, 34 : 525 - 527
  • [22] Comprehensive Evaluation of RNA-seq Quantification Methods for Linearity
    Jin, Haijing
    Wan, Ying-Wooi
    Liu, Zhandong
    PROCEEDINGS OF THE 7TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2016, : 539 - 539
  • [23] Comprehensive evaluation of RNA-seq quantification methods for linearity
    Jin, Haijing
    Wan, Ying-Wooi
    Liu, Zhandong
    BMC BIOINFORMATICS, 2017, 18
  • [24] Differential analysis of RNA-seq incorporating quantification uncertainty
    Pimentel, Harold
    Bray, Nicolas L.
    Puente, Suzette
    Melsted, Pall
    Pachter, Lior
    NATURE METHODS, 2017, 14 (07) : 687 - +
  • [25] A Robust Method for Transcript Quantification with RNA-Seq Data
    Huang, Yan
    Hu, Yin
    Jones, Corbin D.
    MacLeod, James N.
    Chiang, Derek Y.
    Liu, Yufeng
    Prins, Jan F.
    Liu, Jinze
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2013, 20 (03) : 167 - 187
  • [26] Simultaneous Isoform Discovery and Quantification from RNA-Seq
    Hiller D.
    Wong W.H.
    Statistics in Biosciences, 2013, 5 (1) : 100 - 118
  • [27] Differential analysis of RNA-seq incorporating quantification uncertainty
    Harold Pimentel
    Nicolas L Bray
    Suzette Puente
    Páll Melsted
    Lior Pachter
    Nature Methods, 2017, 14 : 687 - 690
  • [28] Comprehensive evaluation of RNA-seq quantification methods for linearity
    Haijing Jin
    Ying-Wooi Wan
    Zhandong Liu
    BMC Bioinformatics, 18
  • [29] Near-optimal probabilistic RNA-seq quantification
    Bray, Nicolas L.
    Pimentel, Harold
    Melsted, Pall
    Pachter, Lior
    NATURE BIOTECHNOLOGY, 2016, 34 (05) : 525 - 527
  • [30] A fast and globally optimal solution for RNA-seq quantification
    Yi, Huiguang
    Lin, Yanling
    Chang, Qing
    Jin, Wenfei
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (05)