A fast and globally optimal solution for RNA-seq quantification

被引:0
|
作者
Yi, Huiguang [1 ,2 ]
Lin, Yanling
Chang, Qing [1 ]
Jin, Wenfei [2 ]
机构
[1] Chinese Acad Agr Sci, Agr Genom Inst Shenzhen, Beijing, Peoples R China
[2] Southern Univ Sci & Technol, Sch Life Sci, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
alignment-free; RNA-seq quantification; globally optimal; EXPRESSION; ALIGNMENT;
D O I
10.1093/bib/bbad298
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Alignment-based RNA-seq quantification methods typically involve a time-consuming alignment process prior to estimating transcript abundances. In contrast, alignment-free RNA-seq quantification methods bypass this step, resulting in significant speed improvements. Existing alignment-free methods rely on the Expectation-Maximization (EM) algorithm for estimating transcript abundances. However, EM algorithms only guarantee locally optimal solutions, leaving room for further accuracy improvement by finding a globally optimal solution. In this study, we present TQSLE, the first alignment-free RNA-seq quantification method that provides a globally optimal solution for transcript abundances estimation. TQSLE adopts a two-step approach: first, it constructs a k-mer frequency matrix A for the reference transcriptome and a k-mer frequency vector b for the RNA-seq reads; then, it directly estimates transcript abundances by solving the linear equation A(T)Ax = A(T)b. We evaluated the performance of TQSLE using simulated and real RNA-seq data sets and observed that, despite comparable speed to other alignment-free methods, TQSLE outperforms them in terms of accuracy. TQSLE is freely available at .
引用
收藏
页数:9
相关论文
共 50 条
  • [2] Near-optimal probabilistic RNA-seq quantification
    Nicolas L Bray
    Harold Pimentel
    Páll Melsted
    Lior Pachter
    Nature Biotechnology, 2016, 34 : 525 - 527
  • [3] Near-optimal probabilistic RNA-seq quantification
    Bray, Nicolas L.
    Pimentel, Harold
    Melsted, Pall
    Pachter, Lior
    NATURE BIOTECHNOLOGY, 2016, 34 (05) : 525 - 527
  • [4] Erratum: Near-optimal probabilistic RNA-seq quantification
    Nicolas L Bray
    Harold Pimentel
    Páll Melsted
    Lior Pachter
    Nature Biotechnology, 2016, 34 : 888 - 888
  • [5] Transcript quantification with RNA-Seq data
    Bohnert, Regina
    Behr, Jonas
    Raetsch, Gunnar
    BMC BIOINFORMATICS, 2009, 10 : P5
  • [6] Benchmarking RNA-Seq Quantification Tools
    Chandramohan, Raghu
    Wu, Po-Yen
    Phan, John H.
    Wang, May D.
    2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 647 - 650
  • [7] A benchmark for RNA-seq quantification pipelines
    Teng, Mingxiang
    Love, Michael I.
    Davis, Carrie A.
    Djebali, Sarah
    Dobin, Alexander
    Graveley, Brenton R.
    Li, Sheng
    Mason, Christopher E.
    Olson, Sara
    Pervouchine, Dmitri
    Sloan, Cricket A.
    Wei, Xintao
    Zhan, Lijun
    Irizarry, Rafael A.
    GENOME BIOLOGY, 2016, 17
  • [8] A benchmark for RNA-seq quantification pipelines
    Mingxiang Teng
    Michael I. Love
    Carrie A. Davis
    Sarah Djebali
    Alexander Dobin
    Brenton R. Graveley
    Sheng Li
    Christopher E. Mason
    Sara Olson
    Dmitri Pervouchine
    Cricket A. Sloan
    Xintao Wei
    Lijun Zhan
    Rafael A. Irizarry
    Genome Biology, 17
  • [9] Transcript quantification with RNA-Seq data
    Regina Bohnert
    Jonas Behr
    Gunnar Rätsch
    BMC Bioinformatics, 10
  • [10] RNA-seq: impact of RNA degradation on transcript quantification
    Romero, Irene Gallego
    Pai, Athma A.
    Tung, Jenny
    Gilad, Yoav
    BMC BIOLOGY, 2014, 12