A fast and globally optimal solution for RNA-seq quantification

被引:0
|
作者
Yi, Huiguang [1 ,2 ]
Lin, Yanling
Chang, Qing [1 ]
Jin, Wenfei [2 ]
机构
[1] Chinese Acad Agr Sci, Agr Genom Inst Shenzhen, Beijing, Peoples R China
[2] Southern Univ Sci & Technol, Sch Life Sci, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
alignment-free; RNA-seq quantification; globally optimal; EXPRESSION; ALIGNMENT;
D O I
10.1093/bib/bbad298
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Alignment-based RNA-seq quantification methods typically involve a time-consuming alignment process prior to estimating transcript abundances. In contrast, alignment-free RNA-seq quantification methods bypass this step, resulting in significant speed improvements. Existing alignment-free methods rely on the Expectation-Maximization (EM) algorithm for estimating transcript abundances. However, EM algorithms only guarantee locally optimal solutions, leaving room for further accuracy improvement by finding a globally optimal solution. In this study, we present TQSLE, the first alignment-free RNA-seq quantification method that provides a globally optimal solution for transcript abundances estimation. TQSLE adopts a two-step approach: first, it constructs a k-mer frequency matrix A for the reference transcriptome and a k-mer frequency vector b for the RNA-seq reads; then, it directly estimates transcript abundances by solving the linear equation A(T)Ax = A(T)b. We evaluated the performance of TQSLE using simulated and real RNA-seq data sets and observed that, despite comparable speed to other alignment-free methods, TQSLE outperforms them in terms of accuracy. TQSLE is freely available at .
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Towards reliable isoform quantification using RNA-SEQ data
    Howard, Brian E.
    Heber, Steffen
    BMC BIOINFORMATICS, 2010, 11
  • [42] RNA-Seq quantification of the human small airway epithelium transcriptome
    Hackett, Neil R.
    Butler, Marcus W.
    Shaykhiev, Renat
    Salit, Jacqueline
    Omberg, Larsson
    Rodriguez-Flores, Juan L.
    Mezey, Jason G.
    Strulovici-Barel, Yael
    Wang, Guoqing
    Didon, Lukas
    Crystal, Ronald G.
    BMC GENOMICS, 2012, 13
  • [43] Evaluation and comparison of computational tools for RNA-seq isoform quantification
    Zhang, Chi
    Zhang, Baohong
    Lin, Lih-Ling
    Zhao, Shanrong
    BMC GENOMICS, 2017, 18
  • [44] Detecting, Categorizing, and Correcting Coverage Anomalies of RNA-Seq Quantification
    Ma, Cong
    Kingsford, Carl
    CELL SYSTEMS, 2019, 9 (06) : 589 - +
  • [45] Impact of gene annotation choice on the quantification of RNA-seq data
    David Chisanga
    Yang Liao
    Wei Shi
    BMC Bioinformatics, 23
  • [46] RNA-Skim: a rapid method for RNA-Seq quantification at transcript level
    Zhang, Zhaojun
    Wang, Wei
    BIOINFORMATICS, 2014, 30 (12) : 283 - 292
  • [47] CRAM-Seq: Accelerating RNA-Seq Abundance Quantification Using Computational RAM
    Chowdhury, Zamshed I. I.
    Khatamifard, S. Karen
    Resch, Salonik
    Cilasun, Husrev
    Zhao, Zhengyang
    Zabihi, Masoud
    Razaviyayn, Meisam
    Wang, Jian-Ping
    Sapatnekar, Sachin S. S.
    Karpuzcu, Ulya R. R.
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2022, 10 (04) : 2055 - 2071
  • [48] DART: a fast and accurate RNA-seq mapper with a partitioning strategy
    Lin, Hsin-Nan
    Hsu, Wen-Lian
    BIOINFORMATICS, 2018, 34 (02) : 190 - 197
  • [49] RNA-Seq unleashed
    Iyer, Matthew K.
    Chinnaiyan, Arul M.
    NATURE BIOTECHNOLOGY, 2011, 29 (07) : 599 - 600
  • [50] The true RNA-seq
    Nicole Rusk
    Nature Methods, 2009, 6 : 791 - 791