A benchmark for RNA-seq quantification pipelines

被引:114
|
作者
Teng, Mingxiang [1 ,2 ,9 ]
Love, Michael I. [1 ,2 ]
Davis, Carrie A. [3 ]
Djebali, Sarah [4 ,5 ]
Dobin, Alexander [3 ]
Graveley, Brenton R. [6 ]
Li, Sheng [7 ]
Mason, Christopher E. [7 ]
Olson, Sara [6 ]
Pervouchine, Dmitri [4 ,5 ]
Sloan, Cricket A. [8 ]
Wei, Xintao [6 ]
Zhan, Lijun [6 ]
Irizarry, Rafael A. [1 ,2 ]
机构
[1] Dana Farber Canc Inst, Dept Biostat & Computat Biol, 450 Brookline Ave, Boston, MA 02215 USA
[2] Harvard Univ, TH Chan Sch Publ Hlth, Dept Biostat, 677 Huntington Ave, Boston, MA 02115 USA
[3] Cold Spring Harbor Lab, Funct Genom Grp, 1 Bungtown Rd, Cold Spring Harbor, NY 11724 USA
[4] Ctr Genom Regulat CRG, Bioinformat & Genom Programme, Doctor Aiguader 88, Barcelona 08003, Spain
[5] UPF, Doctor Aiguader 88, Barcelona 08003, Spain
[6] UConn Hlth Ctr, Inst Syst Genom, Dept Genet & Genome Sci, Farmington, CT 06030 USA
[7] Weill Cornell Med Coll, Dept Physiol & Biophys, New York, NY USA
[8] Stanford Univ, Dept Genet, 300 Pasteur Dr, Stanford, CA 94305 USA
[9] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150006, Peoples R China
来源
GENOME BIOLOGY | 2016年 / 17卷
关键词
GENE-EXPRESSION; CELL; TRANSCRIPTOMES; NORMALIZATION; ABUNDANCE; ALIGNMENT;
D O I
10.1186/s13059-016-0940-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Obtaining RNA-seq measurements involves a complex data analytical process with a large number of competing algorithms as options. There is much debate about which of these methods provides the best approach. Unfortunately, it is currently difficult to evaluate their performance due in part to a lack of sensitive assessment metrics. We present a series of statistical summaries and plots to evaluate the performance in terms of specificity and sensitivity, available as a R/Bioconductor package (http://bioconductor.org/packages/rnaseqcomp). Using two independent datasets, we assessed seven competing pipelines. Performance was generally poor, with two methods clearly underperforming and RSEM slightly outperforming the rest.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Improved RNA-Seq Partitions in Linear Models for Isoform Quantification
    Howard, Brian E.
    Veronese, Paola
    Heber, Steffen
    2011 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM 2011), 2011, : 151 - 154
  • [42] Towards Reliable Isoform Quantification Using RNA-Seq Data
    Howard, Brian E.
    Heber, Steffen
    2009 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2009, : 130 - 135
  • [43] Union Exon Based Approach for RNA-Seq Gene Quantification: To Be or Not to Be?
    Zhao, Shanrong
    Xi, Li
    Zhang, Baohong
    PLOS ONE, 2015, 10 (11):
  • [44] Prediction and Quantification of Splice Events from RNA-Seq Data
    Goldstein, Leonard D.
    Cao, Yi
    Pau, Gregoire
    Lawrence, Michael
    Wu, Thomas D.
    Seshagiri, Somasekar
    Gentleman, Robert
    PLOS ONE, 2016, 11 (05):
  • [45] Computational methods for transcriptome annotation and quantification using RNA-seq
    Garber, Manuel
    Grabherr, Manfred G.
    Guttman, Mitchell
    Trapnell, Cole
    NATURE METHODS, 2011, 8 (06) : 469 - 477
  • [46] Evaluation and comparison of computational tools for RNA-seq isoform quantification
    Chi Zhang
    Baohong Zhang
    Lih-Ling Lin
    Shanrong Zhao
    BMC Genomics, 18
  • [47] An Approach for Assessing RNA-seq Quantification Algorithms in Replication Studies
    Wu, Po-Yen
    Phan, John H.
    Wang, May D.
    2013 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS (GENSIPS 2013), 2013, : 15 - 18
  • [48] Erratum: Near-optimal probabilistic RNA-seq quantification
    Nicolas L Bray
    Harold Pimentel
    Páll Melsted
    Lior Pachter
    Nature Biotechnology, 2016, 34 : 888 - 888
  • [49] Towards reliable isoform quantification using RNA-SEQ data
    Brian E Howard
    Steffen Heber
    BMC Bioinformatics, 11
  • [50] RNA-seq Quantification on Processing in memory Architecture: Observation and Characterization
    Chen, Liang-Chi
    Yu, Shu-Qi
    Ho, Chien-Chung
    Chang, Yuan-Hao
    Chang, Da-Wei
    Wang, Wei-Chen
    Chang, Yu-Ming
    2022 IEEE 11TH NON-VOLATILE MEMORY SYSTEMS AND APPLICATIONS SYMPOSIUM (NVMSA 2022), 2022, : 26 - 32