A benchmark for RNA-seq quantification pipelines

被引:114
|
作者
Teng, Mingxiang [1 ,2 ,9 ]
Love, Michael I. [1 ,2 ]
Davis, Carrie A. [3 ]
Djebali, Sarah [4 ,5 ]
Dobin, Alexander [3 ]
Graveley, Brenton R. [6 ]
Li, Sheng [7 ]
Mason, Christopher E. [7 ]
Olson, Sara [6 ]
Pervouchine, Dmitri [4 ,5 ]
Sloan, Cricket A. [8 ]
Wei, Xintao [6 ]
Zhan, Lijun [6 ]
Irizarry, Rafael A. [1 ,2 ]
机构
[1] Dana Farber Canc Inst, Dept Biostat & Computat Biol, 450 Brookline Ave, Boston, MA 02215 USA
[2] Harvard Univ, TH Chan Sch Publ Hlth, Dept Biostat, 677 Huntington Ave, Boston, MA 02115 USA
[3] Cold Spring Harbor Lab, Funct Genom Grp, 1 Bungtown Rd, Cold Spring Harbor, NY 11724 USA
[4] Ctr Genom Regulat CRG, Bioinformat & Genom Programme, Doctor Aiguader 88, Barcelona 08003, Spain
[5] UPF, Doctor Aiguader 88, Barcelona 08003, Spain
[6] UConn Hlth Ctr, Inst Syst Genom, Dept Genet & Genome Sci, Farmington, CT 06030 USA
[7] Weill Cornell Med Coll, Dept Physiol & Biophys, New York, NY USA
[8] Stanford Univ, Dept Genet, 300 Pasteur Dr, Stanford, CA 94305 USA
[9] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150006, Peoples R China
来源
GENOME BIOLOGY | 2016年 / 17卷
关键词
GENE-EXPRESSION; CELL; TRANSCRIPTOMES; NORMALIZATION; ABUNDANCE; ALIGNMENT;
D O I
10.1186/s13059-016-0940-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Obtaining RNA-seq measurements involves a complex data analytical process with a large number of competing algorithms as options. There is much debate about which of these methods provides the best approach. Unfortunately, it is currently difficult to evaluate their performance due in part to a lack of sensitive assessment metrics. We present a series of statistical summaries and plots to evaluate the performance in terms of specificity and sensitivity, available as a R/Bioconductor package (http://bioconductor.org/packages/rnaseqcomp). Using two independent datasets, we assessed seven competing pipelines. Performance was generally poor, with two methods clearly underperforming and RSEM slightly outperforming the rest.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Transcript quantification with RNA-Seq data
    Regina Bohnert
    Jonas Behr
    Gunnar Rätsch
    BMC Bioinformatics, 10
  • [12] RNA-seq: impact of RNA degradation on transcript quantification
    Romero, Irene Gallego
    Pai, Athma A.
    Tung, Jenny
    Gilad, Yoav
    BMC BIOLOGY, 2014, 12
  • [13] ARPIR: automatic RNA-Seq pipelines with interactive report
    Giulio Spinozzi
    Valentina Tini
    Alessia Adorni
    Brunangelo Falini
    Maria Paola Martelli
    BMC Bioinformatics, 21
  • [14] RNA-seq: impact of RNA degradation on transcript quantification
    Irene Gallego Romero
    Athma A Pai
    Jenny Tung
    Yoav Gilad
    BMC Biology, 12
  • [15] CIRCexplorer pipelines for circRNA annotation and quantification from non-polyadenylated RNA-seq datasets
    Ma, Xu-Kai
    Xue, Wei
    Chen, Ling-Ling
    Yang, Li
    METHODS, 2021, 196 : 3 - 10
  • [16] ARPIR: automatic RNA-Seq pipelines with interactive report
    Spinozzi, Giulio
    Tini, Valentina
    Adorni, Alessia
    Falini, Brunangelo
    Martelli, Maria Paola
    BMC BIOINFORMATICS, 2020, 21 (Suppl 19)
  • [17] Improving the Flexibility of RNA-Seq Data Analysis Pipelines
    Phan, John H.
    Wu, Po-Yen
    Wang, May D.
    2012 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS (GENSIPS), 2012, : 70 - 73
  • [18] A benchmarking of pipelines for detecting ncRNAs from RNA-Seq data
    Di Bella, Sebastiano
    La Ferlita, Alessandro
    Carapezza, Giovanni
    Alaimo, Salvatore
    Isacchi, Antonella
    Ferro, Alfredo
    Pulvirenti, Alfredo
    Bosotti, Roberta
    BRIEFINGS IN BIOINFORMATICS, 2020, 21 (06) : 1987 - 1998
  • [19] A systematic evaluation of single cell RNA-seq analysis pipelines
    Vieth, Beate
    Parekh, Swati
    Ziegenhain, Christoph
    Enard, Wolfgang
    Hellmann, Ines
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [20] A systematic evaluation of single cell RNA-seq analysis pipelines
    Beate Vieth
    Swati Parekh
    Christoph Ziegenhain
    Wolfgang Enard
    Ines Hellmann
    Nature Communications, 10