CIRCexplorer pipelines for circRNA annotation and quantification from non-polyadenylated RNA-seq datasets

被引:22
|
作者
Ma, Xu-Kai [1 ]
Xue, Wei [1 ]
Chen, Ling-Ling [2 ,3 ,4 ]
Yang, Li [1 ,3 ]
机构
[1] Chinese Acad Sci, Univ Chinese Acad Sci, Shanghai Inst Nutr & Hlth, CAS Key Lab Computat Biol, 320 Yueyang Rd, Shanghai 200031, Peoples R China
[2] Chinese Acad Sci, Univ Chinese Acad Sci, Shanghai Inst Biochem & Cell Biol,State Key Lab M, CAS Ctr Excellence Mol Cell Sci,Shanghai Key Lab, 320 Yueyang Rd, Shanghai 200031, Peoples R China
[3] Shanghai Tech Univ, Sch Life Sci & Technol, 393 Middle Huaxia Rd, Shanghai 201210, Peoples R China
[4] Univ Chinese Acad Sci, Sch Life Sci, Hangzhou Inst Adv Study, Hangzhou 310024, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Circular RNA; CircRNA; CIRCexplorer; Alternative back-splicing; Non-polyadenylated RNA-seq; LONG NONCODING RNAS; CIRCULAR RNAS; READ ALIGNMENT; TRANSCRIPTOME; BIOGENESIS; REVEALS; LANDSCAPE; DIVERSITY; CIS;
D O I
10.1016/j.ymeth.2021.02.008
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Covalently closed circular RNAs (circRNAs) produced by back-splicing of exon(s) are co-expressed with their cognate linear RNAs from the same gene loci. Most circRNAs are fully overlapped with their cognate linear RNAs in sequences except the back-spliced junction (BSJ) site, thus challenging the computational detection, experimental validation and hence functional evaluation of circRNAs. Nevertheless, specific bioinformatic pipelines were developed to identify fragments mapped to circRNA-featured BSJ sites, and circRNAs were pervasively identified from non-polyadenylated RNA-seq datasets in different cell lines/tissues and across species. Precise identification and quantification of circRNAs provide a basis to further understand their functions. Here, we describe detailed computational steps to annotate and quantify circRNAs using a series of CIRCexplorer pipelines.
引用
收藏
页码:3 / 10
页数:8
相关论文
共 50 条
  • [1] Gene expression profiling of non-polyadenylated RNA-seq across species
    Zhang, Xiao-Ou
    Yin, Qing-Fei
    Chen, Ling-Ling
    Yang, Li
    GENOMICS DATA, 2014, 2 : 237 - 241
  • [2] A benchmark for RNA-seq quantification pipelines
    Teng, Mingxiang
    Love, Michael I.
    Davis, Carrie A.
    Djebali, Sarah
    Dobin, Alexander
    Graveley, Brenton R.
    Li, Sheng
    Mason, Christopher E.
    Olson, Sara
    Pervouchine, Dmitri
    Sloan, Cricket A.
    Wei, Xintao
    Zhan, Lijun
    Irizarry, Rafael A.
    GENOME BIOLOGY, 2016, 17
  • [3] A benchmark for RNA-seq quantification pipelines
    Mingxiang Teng
    Michael I. Love
    Carrie A. Davis
    Sarah Djebali
    Alexander Dobin
    Brenton R. Graveley
    Sheng Li
    Christopher E. Mason
    Sara Olson
    Dmitri Pervouchine
    Cricket A. Sloan
    Xintao Wei
    Lijun Zhan
    Rafael A. Irizarry
    Genome Biology, 17
  • [4] Erratum to: A benchmark for RNA-seq quantification pipelines
    Mingxiang Teng
    Michael I. Love
    Carrie A. Davis
    Sarah Djebali
    Alexander Dobin
    Brenton R. Graveley
    Sheng Li
    Christopher E. Mason
    Sara Olson
    Dmitri Pervouchine
    Cricket A. Sloan
    Xintao Wei
    Lijun Zhan
    Rafael A. Irizarry
    Genome Biology, 17
  • [5] Erratum to: A benchmark for RNA-seq quantification pipelines
    Mingxiang Teng
    Michael I. Love
    Carrie A. Davis
    Sarah Djebali
    Alexander Dobin
    Brenton R. Graveley
    Sheng Li
    Christopher E. Mason
    Sara Olson
    Dmitri Pervouchine
    Cricket A. Sloan
    Xintao Wei
    Lijun Zhan
    Rafael A. Irizarry
    Genome Biology, 17
  • [6] Acfs: accurate circRNA identification and quantification from RNA-Seq data
    You, Xintian
    Conrad, Tim O. F.
    SCIENTIFIC REPORTS, 2016, 6
  • [7] Acfs: accurate circRNA identification and quantification from RNA-Seq data
    Xintian You
    Tim OF Conrad
    Scientific Reports, 6
  • [8] Novel Method of Full-Length RNA-seq That Expands the Identification of Non-Polyadenylated RNAs Using Nanopore Sequencing
    Li, Xiaohan
    Yu, Kequan
    Li, Fuyu
    Lu, Wenxiang
    Wang, Ying
    Zhang, Weizhong
    Bai, Yunfei
    ANALYTICAL CHEMISTRY, 2022, : 12342 - 12351
  • [9] SFMetaDB: a comprehensive annotation of mouse RNA splicing factor RNA-Seq datasets
    Li, Jin
    Tseng, Ching-San
    Federico, Antonio
    Ivankovic, Franjo
    Huang, Yi-Shuian
    Ciccodicola, Alfredo
    Swanson, Maurice S.
    Yu, Peng
    DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2017,
  • [10] Impact of gene annotation choice on the quantification of RNA-seq data
    Chisanga, David
    Liao, Yang
    Shi, Wei
    BMC BIOINFORMATICS, 2022, 23 (01)