Ridge Fuzzy Regression Model

被引:36
|
作者
Choi, Seung Hoe [1 ]
Jung, Hye-Young [2 ]
Kim, Hyoshin [3 ]
机构
[1] Korea Aerosp Univ, Sch Liberal Arts & Sci, Seoul, South Korea
[2] Seoul Natl Univ, Fac Liberal Educ, Seoul, South Korea
[3] Seoul Natl Univ, Dept Stat, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Ridge regression; Multicollinearity; Ridge fuzzy regression model; Fuzzy multiple linear regression model; NUMBERS;
D O I
10.1007/s40815-019-00692-0
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Ridge regression model is a widely used model with many successful applications, especially in managing correlated covariates in a multiple regression model. Multicollinearity represents a serious threat in fuzzy regression models as well. We address this issue by combining ridge regression with the fuzzy regression model. Our proposed algorithm uses the a-level estimation method to evaluate the parameters of the ridge fuzzy regression model. Two examples are given to illustrate the ridge fuzzy regression model with crisp input/fuzzy output and fuzzy coefficients.
引用
收藏
页码:2077 / 2090
页数:14
相关论文
共 50 条
  • [31] Restricted ridge estimator in the logistic regression model
    Asar, Yasin
    Arashi, Mohammad
    Wu, Jibo
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (08) : 6538 - 6544
  • [32] A modified ridge estimator in Cox regression model
    Algamal, Zakariya Yahya
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2025,
  • [33] RIDGE-REGRESSION ESTIMATION OF THE ROTTERDAM MODEL
    SWAMY, PAVB
    MEHTA, JS
    JOURNAL OF ECONOMETRICS, 1983, 22 (03) : 365 - 390
  • [34] A New Ridge Estimator for the Poisson Regression Model
    Rashad, Nadwa K.
    Algamal, Zakariya Yahya
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A6): : 2921 - 2928
  • [35] A New Ridge Estimator for the Poisson Regression Model
    Nadwa K. Rashad
    Zakariya Yahya Algamal
    Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43 : 2921 - 2928
  • [36] Improved ridge estimators in a linear regression model
    Liu, Xu-Qing
    Gao, Feng
    Yu, Zhen-Feng
    JOURNAL OF APPLIED STATISTICS, 2013, 40 (01) : 209 - 220
  • [37] Ridge estimator in a mixed Poisson regression model
    Tharshan, Ramajeyam
    Wijekoon, Pushpakanthie
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (07) : 3253 - 3270
  • [38] MODEL SELECTION OF KERNEL RIDGE REGRESSION FOR EXTRAPOLATION
    Tanaka, Akira
    Nakamura, Masanari
    Imai, Hideyuki
    2021 IEEE 31ST INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2021,
  • [39] Resolution of fuzzy regression model
    Wang, HF
    Tsaur, RC
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2000, 126 (03) : 637 - 650
  • [40] A fuzzy model for linear regression
    I. V. Ponomarev
    V. V. Slavskii
    Doklady Mathematics, 2009, 80 : 746 - 748