Ridge estimator in a mixed Poisson regression model

被引:3
|
作者
Tharshan, Ramajeyam [1 ,2 ]
Wijekoon, Pushpakanthie [3 ]
机构
[1] Univ Peradeniya, Postgrad Inst Sci, Peradeniya, Sri Lanka
[2] Univ Jaffna, Dept Math & Stat, Jaffna, Sri Lanka
[3] Univ Peradeniya, Dept Stat & Comp Sci, Peradeniya, Sri Lanka
关键词
Generalized linear model; Mixed Poisson regression model; MLE; multicollinearity; Over-dispersion; Poisson regression model; Ridge estimator;
D O I
10.1080/03610918.2022.2101064
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The generalized linear model approach of the mixed Poisson regression models (MPRM) is suitable for over-dispersed count data. The maximum likelihood estimator (MLE) is adopted to estimate their regression coefficients. However, the variance of the MLE becomes high when the covariates are collinear. The Poisson-Modification of Quasi Lindley (PMQL) regression model is a recently introduced model as an alternative MPRM. The variance of the proposed MLE for the PMQL regression model is high in the presence of multicollinearity. This paper adopts the ridge regression method for the PMQL regression model to combat such an issue, and we use several notable methods to estimate its ridge parameter. A Monte Carlo simulation study was designed to evaluate the performance of the MLE and the different PMQL ridge regression estimators by using their scalar mean square (SMSE) values. Further, we analyzed a simulated data and a real-life applications to show the consistency of the simulation results. The simulation and applications results indicate that the PMQL ridge regression estimators dominate the MLE when multicollinearity exists.
引用
收藏
页码:3253 / 3270
页数:18
相关论文
共 50 条
  • [1] A New Ridge Estimator for the Poisson Regression Model
    Nadwa K. Rashad
    Zakariya Yahya Algamal
    [J]. Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43 : 2921 - 2928
  • [2] A New Ridge Estimator for the Poisson Regression Model
    Rashad, Nadwa K.
    Algamal, Zakariya Yahya
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A6): : 2921 - 2928
  • [3] A Poisson ridge regression estimator
    Mansson, Kristofer
    Shukur, Ghazi
    [J]. ECONOMIC MODELLING, 2011, 28 (04) : 1475 - 1481
  • [4] MODIFIED RIDGE ESTIMATOR IN ZERO-INFLATED POISSON REGRESSION MODEL
    Younus, Farah Abdul Ghani
    Othman, Rafal Adeeb
    Algamal, Zakariya Yahya
    [J]. INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2022, 18 : 1245 - 1250
  • [5] An Almost Unbiased Ridge Estimator for the Conway–Maxwell–Poisson Regression Model
    Faiza Sami
    Muhammad Amin
    Muhammad Moeen Butt
    Seyab Yasin
    [J]. Iranian Journal of Science, 2023, 47 : 1209 - 1219
  • [6] A new stochastic mixed ridge estimator in linear regression model
    Yalian Li
    Hu Yang
    [J]. Statistical Papers, 2010, 51 : 315 - 323
  • [7] A new stochastic mixed ridge estimator in linear regression model
    Li, Yalian
    Yang, Hu
    [J]. STATISTICAL PAPERS, 2010, 51 (02) : 315 - 323
  • [8] Robust modified jackknife ridge estimator for the Poisson regression model with multicollinearity and outliers
    Arum, Kingsley C.
    Ugwuowo, Fidelis, I
    Oranye, Henrietta E.
    [J]. SCIENTIFIC AFRICAN, 2022, 17
  • [9] An Almost Unbiased Ridge Estimator for the Conway-Maxwell-Poisson Regression Model
    Sami, Faiza
    Amin, Muhammad
    Butt, Muhammad Moeen
    Yasin, Seyab
    [J]. IRANIAN JOURNAL OF SCIENCE, 2023, 47 (04) : 1209 - 1219
  • [10] ALMOST UNBIASED RIDGE ESTIMATOR IN THE ZERO-INATED POISSON REGRESSION MODEL
    Al-Taweel, Younus
    Algamal, Zakariya
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2022, 12 (01): : 235 - 246