Improved ridge estimators in a linear regression model

被引:9
|
作者
Liu, Xu-Qing [1 ]
Gao, Feng [1 ]
Yu, Zhen-Feng [1 ]
机构
[1] Huaiyin Inst Technol, Fac Math & Phys, Huaian 223003, Peoples R China
关键词
linear regression; improved ridge estimator; singular value decomposition; MSE; PRESS; NONORTHOGONAL PROBLEMS; PREDICTION; CRITERION; VARIABLES; ERROR;
D O I
10.1080/02664763.2012.740623
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, the notion of the improved ridge estimator (IRE) is put forward in the linear regression model y=X beta+e. The problem arises if augmenting the equation 0=c'a+e instead of 0=C a+? to the model. Three special IREs are considered and studied under the mean-squared error criterion and the prediction error sum of squares criterion. The simulations demonstrate that the proposed estimators are effective and recommendable, especially when multicollinearity is severe.
引用
收藏
页码:209 / 220
页数:12
相关论文
共 50 条