Improved ridge regression estimators for the logistic regression model

被引:19
|
作者
Saleh, A. K. Md. E. [1 ]
Kibria, B. M. Golam [2 ]
机构
[1] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
[2] Florida Int Univ, Dept Math & Stat, Miami, FL 33199 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Dominance; Efficiency; Pre-test; Risk function; Stein-rule estimator; PERFORMANCE; SIMULATION; VARIANCE;
D O I
10.1007/s00180-013-0417-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The estimation of the regression parameters for the ill-conditioned logistic regression model is considered in this paper. We proposed five ridge regression (RR) estimators, namely, unrestricted RR, restricted ridge regression, preliminary test RR, shrinkage ridge regression and positive rule RR estimators for estimating the parameters when it is suspected that the parameter may belong to a linear subspace defined by . Asymptotic properties of the estimators are studied with respect to quadratic risks. The performances of the proposed estimators are compared based on the quadratic bias and risk functions under both null and alternative hypotheses, which specify certain restrictions on the regression parameters. The conditions of superiority of the proposed estimators for departure and ridge parameters are given. Some graphical representations and efficiency analysis have been presented which support the findings of the paper.
引用
收藏
页码:2519 / 2558
页数:40
相关论文
共 50 条
  • [1] Improved ridge regression estimators for the logistic regression model
    A. K. Md. E. Saleh
    B. M. Golam Kibria
    [J]. Computational Statistics, 2013, 28 : 2519 - 2558
  • [2] RIDGE ESTIMATORS IN LOGISTIC-REGRESSION
    LECESSIE, S
    VANHOUWELINGEN, JC
    [J]. APPLIED STATISTICS-JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C, 1992, 41 (01): : 191 - 201
  • [3] Improved ridge estimators in a linear regression model
    Liu, Xu-Qing
    Gao, Feng
    Yu, Zhen-Feng
    [J]. JOURNAL OF APPLIED STATISTICS, 2013, 40 (01) : 209 - 220
  • [4] Performance of Some Logistic Ridge Regression Estimators
    Kibria, B. M. Golam
    Mansson, Kristofer
    Shukur, Ghazi
    [J]. COMPUTATIONAL ECONOMICS, 2012, 40 (04) : 401 - 414
  • [5] Performance of Some Logistic Ridge Regression Estimators
    B. M. Golam Kibria
    Kristofer Månsson
    Ghazi Shukur
    [J]. Computational Economics, 2012, 40 : 401 - 414
  • [6] Mean squared error of ridge estimators in logistic regression
    Blagus, Rok
    Goeman, Jelle J.
    [J]. STATISTICA NEERLANDICA, 2020, 74 (02) : 159 - 191
  • [7] Heteroscedasticity consistent ridge regression estimators in linear regression model
    Dar, Irum Sajjad
    Chand, Sohail
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023,
  • [8] Logistic regression diagnostics in ridge regression
    M. Revan Özkale
    Stanley Lemeshow
    Rodney Sturdivant
    [J]. Computational Statistics, 2018, 33 : 563 - 593
  • [9] Logistic regression diagnostics in ridge regression
    Ozkale, M. Revan
    Lemeshow, Stanley
    Sturdivant, Rodney
    [J]. COMPUTATIONAL STATISTICS, 2018, 33 (02) : 563 - 593
  • [10] On ridge estimators for the negative binomial regression model
    Mansson, Kristofer
    [J]. ECONOMIC MODELLING, 2012, 29 (02) : 178 - 184