Improved ridge regression estimators for the logistic regression model

被引:19
|
作者
Saleh, A. K. Md. E. [1 ]
Kibria, B. M. Golam [2 ]
机构
[1] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
[2] Florida Int Univ, Dept Math & Stat, Miami, FL 33199 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Dominance; Efficiency; Pre-test; Risk function; Stein-rule estimator; PERFORMANCE; SIMULATION; VARIANCE;
D O I
10.1007/s00180-013-0417-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The estimation of the regression parameters for the ill-conditioned logistic regression model is considered in this paper. We proposed five ridge regression (RR) estimators, namely, unrestricted RR, restricted ridge regression, preliminary test RR, shrinkage ridge regression and positive rule RR estimators for estimating the parameters when it is suspected that the parameter may belong to a linear subspace defined by . Asymptotic properties of the estimators are studied with respect to quadratic risks. The performances of the proposed estimators are compared based on the quadratic bias and risk functions under both null and alternative hypotheses, which specify certain restrictions on the regression parameters. The conditions of superiority of the proposed estimators for departure and ridge parameters are given. Some graphical representations and efficiency analysis have been presented which support the findings of the paper.
引用
收藏
页码:2519 / 2558
页数:40
相关论文
共 50 条
  • [31] Improved Heteroscedasticity-Consistent Ridge Estimators for Linear Regression with Multicollinearity
    Irum Sajjad Dar
    Sohail Chand
    [J]. Iranian Journal of Science, 2023, 47 : 1593 - 1604
  • [32] More on the Ridge Parameter Estimators for the Gamma Ridge Regression Model: Simulation and Applications
    Yasin, Ahad
    Amin, Muhammad
    Qasim, Muhammad
    Muse, Abdisalam Hassan
    Soliman, Adam Braima
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [33] New ridge parameter estimators for the quasi-Poisson ridge regression model
    Shahzad, Aamir
    Amin, Muhammad
    Emam, Walid
    Faisal, Muhammad
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01)
  • [34] New robust ridge estimators for the linear regression model with outliers
    Majid, Abdul
    Amin, Muhammad
    Aslam, Muhammad
    Ahmad, Shakeel
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (10) : 4717 - 4738
  • [35] Performance of some ridge regression estimators for the multinomial logit model
    Mansson, Kristofer
    Shukur, Ghazi
    Kibria, B. M. Golam
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (12) : 2795 - 2804
  • [36] An improved model averaging scheme for logistic regression
    Ghosh, D.
    Yuan, Z.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2009, 100 (08) : 1670 - 1681
  • [37] RIDGE ESTIMATION IN LOGISTIC-REGRESSION
    LEE, AH
    SILVAPULLE, MJ
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1988, 17 (04) : 1231 - 1257
  • [38] On the Almost Unbiased Ridge and Liu Estimator in the Logistic Regression Model
    Chang, Xinfeng
    [J]. PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON SOCIAL SCIENCE, EDUCATION MANAGEMENT AND SPORTS EDUCATION, 2015, 39 : 1663 - 1665
  • [39] MINIMAX LINEAR-REGRESSION ESTIMATORS WITH APPLICATION TO RIDGE-REGRESSION
    PEELE, L
    RYAN, TP
    [J]. TECHNOMETRICS, 1982, 24 (02) : 157 - 159
  • [40] Beta ridge regression estimators: simulation and application
    Abonazel, Mohamed R.
    Taha, Ibrahim M.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (09) : 4280 - 4292