Ridge Fuzzy Regression Model

被引:36
|
作者
Choi, Seung Hoe [1 ]
Jung, Hye-Young [2 ]
Kim, Hyoshin [3 ]
机构
[1] Korea Aerosp Univ, Sch Liberal Arts & Sci, Seoul, South Korea
[2] Seoul Natl Univ, Fac Liberal Educ, Seoul, South Korea
[3] Seoul Natl Univ, Dept Stat, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Ridge regression; Multicollinearity; Ridge fuzzy regression model; Fuzzy multiple linear regression model; NUMBERS;
D O I
10.1007/s40815-019-00692-0
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Ridge regression model is a widely used model with many successful applications, especially in managing correlated covariates in a multiple regression model. Multicollinearity represents a serious threat in fuzzy regression models as well. We address this issue by combining ridge regression with the fuzzy regression model. Our proposed algorithm uses the a-level estimation method to evaluate the parameters of the ridge fuzzy regression model. Two examples are given to illustrate the ridge fuzzy regression model with crisp input/fuzzy output and fuzzy coefficients.
引用
收藏
页码:2077 / 2090
页数:14
相关论文
共 50 条