Degree conditions for k-ordered Hamiltonian graphs

被引:32
|
作者
Faudree, RJ
Gould, RJ
Kostochka, AV
Lesniak, L [1 ]
Schiermeyer, I
Saito, A
机构
[1] Drew Univ, Dept Math & Comp Sci, Madison, NJ 07940 USA
[2] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
[3] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
[4] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[5] Inst Math, Novosibirsk 630090, Russia
[6] Freiberg Univ Min & Technol, Dept Math & Comp Sci, D-09596 Freiberg, Germany
[7] Nihon Univ, Dept Appl Math, Tokyo 156, Japan
关键词
hamiltonian cycle;
D O I
10.1002/jgt.10084
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a positive integer k, a graph G is k-ordered hamiltonian if for every ordered sequence of k vertices there is a hamiltonian cycle that encounters the vertices of the sequence in the given order. It is shown that if G is a graph of order n with 3 less than or equal to k less than or equal to n/2, and deg(u) +deg(v) greater than or equal to n+(3k-9)/2 for every pair u,v of nonadjacent vertices of G, then G is k-ordered hamiltonian. Minimum degree conditions are also given for k-ordered hamiltonicity. (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:199 / 210
页数:12
相关论文
共 50 条