On k-ordered Graphs Involved Degree Sum

被引:0
|
作者
Zhi-quan Hu
机构
关键词
κ-ordered; fc-ordered Hamiltonian; degree sum;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
070104 ;
摘要
Abstract A graph G is k-ordered Hamiltonian,2≤k≤n,if for every ordered sequence S of k distinctvertlces of G,there exists a Hamiltonian cycle that encounters S in the given order. In this article, we provethat if G is a graph on n vertices with degree sum of nonadjacent vertices at least n+3k-9/2,then G is k-orderedHamiltonian for k=3,4,…,[n/19].We also show that the degree sum bound can be reduced to n+2[k/2]-2 ifk(G)≥3k-1/2 or δ(G)≥5k-4.Several known results are generalized.
引用
收藏
页码:97 / 106
页数:10
相关论文
共 50 条
  • [1] On k-ordered Graphs Involved Degree Sum
    Zhi-quan Hu
    Feng Tian
    Acta Mathematicae Applicatae Sinica, 2003, 19 (1) : 97 - 106
  • [2] Degree Sum Condition for k-ordered Hamiltonian Connected Graphs
    Nicholson, Emlee W.
    Wei, Bing
    GRAPHS AND COMBINATORICS, 2015, 31 (03) : 743 - 755
  • [3] Degree Sum Condition for k-ordered Hamiltonian Connected Graphs
    Emlee W. Nicholson
    Bing Wei
    Graphs and Combinatorics, 2015, 31 : 743 - 755
  • [4] On low degree k-ordered graphs
    Meszaros, Karola
    DISCRETE MATHEMATICS, 2008, 308 (12) : 2418 - 2426
  • [5] Degree conditions for k-ordered Hamiltonian graphs
    Faudree, RJ
    Gould, RJ
    Kostochka, AV
    Lesniak, L
    Schiermeyer, I
    Saito, A
    JOURNAL OF GRAPH THEORY, 2003, 42 (03) : 199 - 210
  • [6] On k-ordered graphs
    Faudree, JR
    Faudree, RJ
    Gould, RJ
    Jacobson, MS
    Lesniak, L
    JOURNAL OF GRAPH THEORY, 2000, 35 (02) : 69 - 82
  • [7] On k-ordered Hamiltonian graphs
    Kierstead, HA
    Sárközy, GN
    Selkow, SM
    JOURNAL OF GRAPH THEORY, 1999, 32 (01) : 17 - 25
  • [8] K-ordered hamiltonian graphs
    Ng, L
    Schultz, M
    JOURNAL OF GRAPH THEORY, 1997, 24 (01) : 45 - 57
  • [9] Generalizing Pancyclic and k-Ordered Graphs
    Ralph J. Faudree
    Ronald J. Gould
    Michael S. Jacobson
    Linda Lesniak
    Graphs and Combinatorics, 2004, 20 : 291 - 309
  • [10] Survey of results on k-ordered graphs
    Faudree, RJ
    DISCRETE MATHEMATICS, 2001, 229 (1-3) : 73 - 87