Degree Sum Condition for k-ordered Hamiltonian Connected Graphs

被引:0
|
作者
Nicholson, Emlee W. [1 ]
Wei, Bing [2 ]
机构
[1] Millsaps Coll, Dept Math, Jackson, MS 39210 USA
[2] Univ Mississippi, Dept Math, University, MS 38677 USA
关键词
Long paths; k-Ordered sets; k-Ordered connected; k-Ordered hamiltonian connected;
D O I
10.1007/s00373-013-1393-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph on n vertices. If for any ordered set of vertices S = {v (1), v (2), . . . , v (k) }, that is, the vertices in S appear in order of the sequence v (1), v (2), . . . , v (k) , there exists a v (1) - v (k) (hamiltonian) path containing S in the given order, then G is k-ordered (hamiltonian) connected. Let {u (1), u (2)} and {u (3), u (4)} be distinct pairs of nonadjacent vertices. When and , we define , otherwise set . In this paper we will present some sufficient conditions for a graph to be k-ordered connected based on . As a main result we will show that if , then G is k-ordered hamiltonian connected. Our outcomes generalize several related results known before.
引用
收藏
页码:743 / 755
页数:13
相关论文
共 50 条
  • [1] Degree Sum Condition for k-ordered Hamiltonian Connected Graphs
    Emlee W. Nicholson
    Bing Wei
    Graphs and Combinatorics, 2015, 31 : 743 - 755
  • [2] Degree conditions for k-ordered Hamiltonian graphs
    Faudree, RJ
    Gould, RJ
    Kostochka, AV
    Lesniak, L
    Schiermeyer, I
    Saito, A
    JOURNAL OF GRAPH THEORY, 2003, 42 (03) : 199 - 210
  • [3] On k-ordered Graphs Involved Degree Sum
    Zhi-quan Hu
    Acta Mathematicae Applicatae Sinica(English Series), 2003, (01) : 97 - 106
  • [4] On k-ordered Graphs Involved Degree Sum
    Zhi-quan Hu
    Feng Tian
    Acta Mathematicae Applicatae Sinica, 2003, 19 (1) : 97 - 106
  • [5] On k-ordered Hamiltonian graphs
    Kierstead, HA
    Sárközy, GN
    Selkow, SM
    JOURNAL OF GRAPH THEORY, 1999, 32 (01) : 17 - 25
  • [6] K-ordered hamiltonian graphs
    Ng, L
    Schultz, M
    JOURNAL OF GRAPH THEORY, 1997, 24 (01) : 45 - 57
  • [7] A study on the k-ordered hamiltonian graphs
    Marcu, Danut
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2008, 11 (01): : 19 - 31
  • [8] On low degree k-ordered graphs
    Meszaros, Karola
    DISCRETE MATHEMATICS, 2008, 308 (12) : 2418 - 2426
  • [9] New conditions for k-ordered Hamiltonian graphs
    Chen, GT
    Gould, RJ
    Pfender, F
    ARS COMBINATORIA, 2004, 70 : 245 - 255
  • [10] Forbidden subgraphs that imply k-ordered and k-ordered hamiltonian
    Faudree, JR
    Faudree, RJ
    DISCRETE MATHEMATICS, 2002, 243 (1-3) : 91 - 108