Degree conditions for k-ordered Hamiltonian graphs

被引:32
|
作者
Faudree, RJ
Gould, RJ
Kostochka, AV
Lesniak, L [1 ]
Schiermeyer, I
Saito, A
机构
[1] Drew Univ, Dept Math & Comp Sci, Madison, NJ 07940 USA
[2] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
[3] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
[4] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[5] Inst Math, Novosibirsk 630090, Russia
[6] Freiberg Univ Min & Technol, Dept Math & Comp Sci, D-09596 Freiberg, Germany
[7] Nihon Univ, Dept Appl Math, Tokyo 156, Japan
关键词
hamiltonian cycle;
D O I
10.1002/jgt.10084
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a positive integer k, a graph G is k-ordered hamiltonian if for every ordered sequence of k vertices there is a hamiltonian cycle that encounters the vertices of the sequence in the given order. It is shown that if G is a graph of order n with 3 less than or equal to k less than or equal to n/2, and deg(u) +deg(v) greater than or equal to n+(3k-9)/2 for every pair u,v of nonadjacent vertices of G, then G is k-ordered hamiltonian. Minimum degree conditions are also given for k-ordered hamiltonicity. (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:199 / 210
页数:12
相关论文
共 50 条
  • [41] SO(4) GROUP GENERATORS FOR K-ORDERED ATOMIC SYSTEMS
    KALLONIATIS, AC
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (11): : L573 - L578
  • [42] Degree conditions for fractional (k, m)-deleted graphs
    Gao, Wei
    Wang, Weifan
    ARS COMBINATORIA, 2014, 113A : 273 - 285
  • [43] DEGREE CONDITIONS AND FRACTIONAL k-FACTORS OF GRAPHS
    Zhou, Sizhong
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (02) : 353 - 363
  • [44] SPECTRAL CONDITIONS FOR GRAPHS TO BE k-HAMILTONIAN OR k-PATH-COVERABLE
    Liu, Weijun
    Liu, Minmin
    Zhang, Pengli
    Feng, Lihua
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (01) : 161 - 179
  • [45] On degree conditions of semi-balanced 3-partite Hamiltonian graphs
    Yokomura, Kuniharu
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2022, 84 : 49 - 55
  • [46] A Degree Constraint for Uniquely Hamiltonian Graphs
    Sarmad Abbasi
    Asif Jamshed
    Graphs and Combinatorics, 2006, 22 : 433 - 442
  • [47] A degree constraint for uniquely Hamiltonian graphs
    Abbasi, Sarmad
    Jamshed, Asif
    GRAPHS AND COMBINATORICS, 2006, 22 (04) : 433 - 442
  • [48] ON MINIMUM DEGREE IN HAMILTONIAN PATH GRAPHS
    HENDRY, GRT
    JOURNAL OF GRAPH THEORY, 1988, 12 (04) : 491 - 498
  • [49] An implicit degree condition for hamiltonian graphs
    Li, Hao
    Ning, Wantao
    Cai, Junqing
    DISCRETE MATHEMATICS, 2012, 312 (14) : 2190 - 2196
  • [50] Mathematical modeling of diagrams of K-ordered regions for ternary azeotropic mixtures
    Orlova, EV
    Reshetov, SA
    Zhvanetskii, IB
    THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING, 1997, 31 (06) : 558 - 561