Degree conditions for k-ordered Hamiltonian graphs

被引:32
|
作者
Faudree, RJ
Gould, RJ
Kostochka, AV
Lesniak, L [1 ]
Schiermeyer, I
Saito, A
机构
[1] Drew Univ, Dept Math & Comp Sci, Madison, NJ 07940 USA
[2] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
[3] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
[4] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[5] Inst Math, Novosibirsk 630090, Russia
[6] Freiberg Univ Min & Technol, Dept Math & Comp Sci, D-09596 Freiberg, Germany
[7] Nihon Univ, Dept Appl Math, Tokyo 156, Japan
关键词
hamiltonian cycle;
D O I
10.1002/jgt.10084
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a positive integer k, a graph G is k-ordered hamiltonian if for every ordered sequence of k vertices there is a hamiltonian cycle that encounters the vertices of the sequence in the given order. It is shown that if G is a graph of order n with 3 less than or equal to k less than or equal to n/2, and deg(u) +deg(v) greater than or equal to n+(3k-9)/2 for every pair u,v of nonadjacent vertices of G, then G is k-ordered hamiltonian. Minimum degree conditions are also given for k-ordered hamiltonicity. (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:199 / 210
页数:12
相关论文
共 50 条
  • [31] Radical Properties of Lattice k-Ordered Algebras
    Kochetova J.V.
    Journal of Mathematical Sciences, 2018, 230 (3) : 411 - 413
  • [32] Minimal degree and (k, m)-pancyclic ordered graphs
    Faudree, RJ
    Gould, RJ
    Jacobson, MS
    Lesniak, L
    GRAPHS AND COMBINATORICS, 2005, 21 (02) : 197 - 211
  • [33] Minimal Degree and (k, m)-Pancyclic Ordered Graphs
    Ralph J. Faudree
    Ronald J. Gould
    Michael S. Jacobson
    Linda Lesniak
    Graphs and Combinatorics, 2005, 21 : 197 - 211
  • [34] EXCLUSIVE GRAPHS AND HAMILTONIAN GRAPHS OF DEGREE
    MRVA, M
    MONATSHEFTE FUR MATHEMATIK, 1975, 80 (02): : 131 - 140
  • [35] Degree conditions for Hamiltonian graphs to have [a,b]-factors containing a given Hamiltonian cycle
    Matsuda, H
    DISCRETE MATHEMATICS, 2004, 280 (1-3) : 241 - 250
  • [36] Degree Conditions for Graphs to Be Fractional k-Covered Graphs
    Zhou, Sizhong
    ARS COMBINATORIA, 2015, 118 : 135 - 142
  • [37] Degree Conditions for k-Hamiltonian [a, b]-factors
    Wu, Jie
    Zhou, Si-zhong
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2021, 37 (02): : 232 - 239
  • [38] Degree Conditions for k-Hamiltonian [a, b]-factors
    Jie WU
    Si-zhong ZHOU
    ActaMathematicaeApplicataeSinica, 2021, 37 (02) : 232 - 239
  • [39] Degree Conditions for k-Hamiltonian [a, b]-factors
    Jie Wu
    Si-zhong Zhou
    Acta Mathematicae Applicatae Sinica, English Series, 2021, 37 : 232 - 239
  • [40] Sufficient spectral conditions for graphs being k-edge-Hamiltonian or k-Hamiltonian
    Li, Yongtao
    Peng, Yuejian
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (13): : 2093 - 2113