Full rank Cholesky factorization for rank deficient matrices

被引:1
|
作者
Canto, Rafael [1 ]
Pelaez, Maria J. [2 ]
Urbano, Ana M. [1 ]
机构
[1] Univ Politecn Valencia, Inst Matemat Multidisciplinar, E-46071 Valencia, Spain
[2] ZLAB Innovac Tecnolog SL, Dept Form, Zaragoza, Spain
关键词
Rank deficient matrices; Cholesky factorization;
D O I
10.1016/j.aml.2014.09.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be a rank deficient square matrix. We characterize the unique full rank Cholesky factorization LALAT of A where the factor L-A is a lower echelon matrix with positive leading entries. We compute an extended decomposition for the normal matrix (BB)-B-T where B is a rectangular rank deficient matrix. This decomposition is obtained without interchange of rows and without computing all entries of the normal matrix. Algorithms to compute both factorizations are given. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:17 / 22
页数:6
相关论文
共 50 条
  • [41] THE CONDITION METRIC IN THE SPACE OF RECTANGULAR FULL RANK MATRICES
    Boito, Paola
    Dedieu, Jean-Pierre
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2010, 31 (05) : 2580 - 2602
  • [42] Small p-groups with full-rank factorization
    Haanpaa, Harri
    Ostergard, Patric R. J.
    Szabo, Sandor
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2008, 18 (06) : 1019 - 1034
  • [43] Full column rank preservers that preserve semipositivity of matrices
    Arumugasamy, Chandrashekaran
    Jayaraman, Sachindranath
    SPECIAL MATRICES, 2018, 6 (01): : 37 - 45
  • [44] SOLUTION OF FULL AND DEFICIENT RANK LINEAR-EQUATIONS
    TEWARSON, RP
    JEN, JF
    COMMUNICATIONS IN APPLIED NUMERICAL METHODS, 1988, 4 (02): : 255 - 261
  • [45] Performance Analysis of Tile Low-Rank Cholesky Factorization Using PaRSEC Instrumentation Tools
    Cao, Qinglei
    Pei, Yu
    Herault, Thomas
    Akbudak, Kadir
    Mikhalev, Aleksandr
    Bosilca, George
    Ltaief, Hatem
    Keyes, David
    Dongarra, Jack
    PROCEEDINGS OF PROTOOLS 2019: 2019 IEEE/ACM INTERNATIONAL WORKSHOP ON PROGRAMMING AND PERFORMANCE VISUALIZATION TOOLS (PROTOOLS), 2019, : 25 - 32
  • [46] OPTIMAL WEIGHTED MATCHINGS FOR RANK-DEFICIENT SPARSE MATRICES
    Hogg, J. D.
    Scott, J. A.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (04) : 1431 - 1447
  • [47] Estimates on the condition number of random rank-deficient matrices
    Beltran, Carlos
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (01) : 25 - 39
  • [48] Rank-deficient submatrices of Kronecker products of Fourier matrices
    Delvaux, Steven
    Van Barel, Marc
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 426 (2-3) : 349 - 367
  • [49] LDU factorization and Cholesky factorization of row (column) antisymmetric matrices
    Yuan, Hui-Ping
    PROCEEDINGS OF THE 14TH CONFERENCE OF INTERNATIONAL LINEAR ALGEBRA SOCIETY, 2007, : 390 - 393
  • [50] Cholesky, Toeplitz and the triangular factorization of symmetric matrices
    Taussky, O
    Todd, J
    NUMERICAL ALGORITHMS, 2006, 41 (02) : 197 - 202