Full rank Cholesky factorization for rank deficient matrices

被引:1
|
作者
Canto, Rafael [1 ]
Pelaez, Maria J. [2 ]
Urbano, Ana M. [1 ]
机构
[1] Univ Politecn Valencia, Inst Matemat Multidisciplinar, E-46071 Valencia, Spain
[2] ZLAB Innovac Tecnolog SL, Dept Form, Zaragoza, Spain
关键词
Rank deficient matrices; Cholesky factorization;
D O I
10.1016/j.aml.2014.09.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be a rank deficient square matrix. We characterize the unique full rank Cholesky factorization LALAT of A where the factor L-A is a lower echelon matrix with positive leading entries. We compute an extended decomposition for the normal matrix (BB)-B-T where B is a rectangular rank deficient matrix. This decomposition is obtained without interchange of rows and without computing all entries of the normal matrix. Algorithms to compute both factorizations are given. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:17 / 22
页数:6
相关论文
共 50 条
  • [31] Tile Low Rank Cholesky Factorization for Climate/Weather Modeling Applications on Manycore Architectures
    Akbudak, Kadir
    Ltaief, Hatem
    Mikhalev, Aleksandr
    Keyes, David
    HIGH PERFORMANCE COMPUTING (ISC HIGH PERFORMANCE 2017), 2017, 10266 : 22 - 40
  • [32] ESTIMATION OF RANK DEFICIENT COVARIANCE MATRICES WITH KRONECKER STRUCTURE
    Castaneda, Mario H.
    Nossek, Josef A.
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [33] Internal model control for structured rank deficient system based on full rank decomposition
    Jiang, Meiying
    Jiang, Beiyan
    Cai, Wu
    Du, Xinghan
    Zhang, Yuming
    Huang, Yan
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2017, 20 (01): : 13 - 24
  • [34] Rank factorization and bordering of regular matrices over commutative rings
    Ballico, E
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 305 (1-3) : 187 - 190
  • [35] On reduced rank nonnegative matrix factorization for symmetric nonnegative matrices
    Catral, M
    Han, LX
    Neumann, M
    Plemmons, RJ
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 393 : 107 - 126
  • [36] An Innovative Approach for Analysing Rank Deficient Covariance Matrices
    Tucci, Gabriel H.
    Wang, Ke
    2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012,
  • [37] Internal model control for structured rank deficient system based on full rank decomposition
    Meiying Jiang
    Beiyan Jiang
    Wu Cai
    Xinghan Du
    Yuming Zhang
    Yan Huang
    Cluster Computing, 2017, 20 : 13 - 24
  • [38] Rank-deficient spectral factorization and wavelets completion problem
    Ephremidze, L.
    Spitkovsky, I.
    Lagvilava, E.
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2015, 13 (03)
  • [39] Batched Cholesky Factorization for tiny matrices
    Lemaitre, Florian
    Lacassagne, Lionel
    PROCEEDINGS OF THE 2016 CONFERENCE ON DESIGN AND ARCHITECTURES FOR SIGNAL & IMAGE PROCESSING, 2016, : 130 - 137
  • [40] Cholesky factorization of semidefinite Toeplitz matrices
    Stewart, M
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 254 : 497 - 525