Full rank Cholesky factorization for rank deficient matrices

被引:1
|
作者
Canto, Rafael [1 ]
Pelaez, Maria J. [2 ]
Urbano, Ana M. [1 ]
机构
[1] Univ Politecn Valencia, Inst Matemat Multidisciplinar, E-46071 Valencia, Spain
[2] ZLAB Innovac Tecnolog SL, Dept Form, Zaragoza, Spain
关键词
Rank deficient matrices; Cholesky factorization;
D O I
10.1016/j.aml.2014.09.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be a rank deficient square matrix. We characterize the unique full rank Cholesky factorization LALAT of A where the factor L-A is a lower echelon matrix with positive leading entries. We compute an extended decomposition for the normal matrix (BB)-B-T where B is a rectangular rank deficient matrix. This decomposition is obtained without interchange of rows and without computing all entries of the normal matrix. Algorithms to compute both factorizations are given. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:17 / 22
页数:6
相关论文
共 50 条
  • [11] Full rank factorization in quasi-LDU form of totally nonpositive rectangular matrices
    Canto, Rafael
    Ricarte, Beatriz
    Urbano, Ana M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 440 : 61 - 82
  • [12] Stratification of full rank polynomial matrices
    Johansson, Stefan
    Kagstrom, Bo
    Van Dooren, Paul
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (04) : 1062 - 1090
  • [13] LOW-RANK APPROXIMATION OF MATRICES VIA A RANK-REVEALING FACTORIZATION WITH RANDOMIZATION
    Kaloorazi, Maboud Farzaneh
    Chen, Jie
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 5815 - 5819
  • [14] Rank-deficient submatrices of Fourier matrices
    Delvaux, Steven
    Van Barel, Marc
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (07) : 1587 - 1605
  • [15] Rank-deficient matrices as a computational tool
    Govaerts, W
    Sijnave, B
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 1997, 4 (06) : 443 - 458
  • [16] Properties of the partial Cholesky factorization and application to reduced-rank adaptive beamforming
    Besson, Olivier
    Vincent, Francois
    SIGNAL PROCESSING, 2020, 167
  • [17] A Framework to Exploit Data Sparsity in Tile Low-Rank Cholesky Factorization
    Cao, Qinglei
    Alomairy, Rabab
    Pei, Yu
    Bosilca, George
    Ltaief, Hatem
    Keyes, David
    Dongarra, Jack
    2022 IEEE 36TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS 2022), 2022, : 414 - 424
  • [18] SPECTRAL FACTORIZATION OF RANK-DEFICIENT RATIONAL DENSITIES
    Cao, Wenqi
    Lindquist, Anders
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2024, 62 (01) : 776 - 798
  • [19] Visualizing Rank Deficient Models: A Row Equation Geometry of Rank Deficient Matrices and Constrained-Regression
    O'Brien, Robert M.
    PLOS ONE, 2012, 7 (06):
  • [20] Information matrices for non full rank subsystems
    Druilhet, Pierre
    Markiewicz, Augustyn
    METRIKA, 2007, 65 (02) : 171 - 182