Estimates on the condition number of random rank-deficient matrices

被引:4
|
作者
Beltran, Carlos [1 ]
机构
[1] Univ Cantabria, Dept Matemat Estadist & Computac, Santander 39012, Spain
关键词
condition number; rank-deficient matrix; random matrix; NUMERICAL-ANALYSIS PROBLEM; SINGULAR MATRICES; PROBABILITY; EFFICIENCY; DIFFICULT;
D O I
10.1093/imanum/drp035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let r < m < n is an element of N and let A be a rank r matrix of size m x n, with entries in K = C or K = R. The generalized condition number of A, which measures the sensitivity of Ker(A) to small perturbations of A, is defined as kappa(A) = vertical bar A vertical bar A(dagger)vertical bar, where (dagger) denotes Moore-Penrose pseudoinversion. In this paper we prove sharp lower and upper bounds on the probability distribution of this condition number, when the set of rank r, m x n matrices is endowed with the natural probability measure coming from the Gaussian measure in K-m (x n). We also prove an upper-bound estimate for the expected value of log kappa in this setting.
引用
收藏
页码:25 / 39
页数:15
相关论文
共 50 条
  • [1] Rank-deficient submatrices of Fourier matrices
    Delvaux, Steven
    Van Barel, Marc
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (07) : 1587 - 1605
  • [2] Rank-deficient matrices as a computational tool
    Govaerts, W
    Sijnave, B
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 1997, 4 (06) : 443 - 458
  • [3] OPTIMAL WEIGHTED MATCHINGS FOR RANK-DEFICIENT SPARSE MATRICES
    Hogg, J. D.
    Scott, J. A.
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (04) : 1431 - 1447
  • [4] Rank-deficient submatrices of Kronecker products of Fourier matrices
    Delvaux, Steven
    Van Barel, Marc
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 426 (2-3) : 349 - 367
  • [5] Direct Schmid–Leiman Transformations and Rank-Deficient Loadings Matrices
    Niels G. Waller
    [J]. Psychometrika, 2018, 83 : 858 - 870
  • [6] Secure Degrees of Freedom of Rank-Deficient BCCM and Rank-Deficient ICCM
    Wang, Qiang
    Zhang, Tianjiao
    Dong, Dongli
    Li, Xuan
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (04) : 4033 - 4041
  • [7] O-lattices for rank-deficient displacement field matrices
    Gómez, A
    Romeu, D
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2000, 14 (10): : 1129 - 1137
  • [8] Recurrent neural networks for computing pseudoinverses of rank-deficient matrices
    Wang, J
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1997, 18 (05): : 1479 - 1493
  • [9] Efficient recursive least squares solver for rank-deficient matrices
    Staub, Ruben
    Steinmann, Stephan N.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2021, 399
  • [10] Maximum likelihood factor analysis with rank-deficient sample covariance matrices
    Robertson, Donald
    Symons, James
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2007, 98 (04) : 813 - 828