The height of an nth-order fundamental rogue wave for the nonlinear Schrodinger equation

被引:26
|
作者
Wang, Lihong [1 ,2 ]
Yang, Chenghao [2 ]
Wang, Ji [1 ]
He, Jingsong [3 ]
机构
[1] Ningbo Univ, Sch Mech Engn & Mech, Ningbo, Zhejiang, Peoples R China
[2] SOA, Inst Oceanog 2, State Key Lab Satellite Ocean Environm Dynam, Qingdao, Peoples R China
[3] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China
关键词
Rogue wave; Nonlinear Schrodinger equation; Darboux transformation; DARBOUX TRANSFORMATION; MODULATION INSTABILITY; BREATHERS; OPTICS; HIERARCHY; SYSTEM; NLS;
D O I
10.1016/j.physleta.2017.03.023
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The height of an nth-order fundamental rogue wave q(rw)([n]) for the nonlinear Schrodinger equation, namely (2n + 1)c, is proved directly by a series of row operations on matrices appeared in the n-fold Darboux transformation. Here the positive constant c denotes the height of the asymptotical plane of the rogue wave. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:1714 / 1718
页数:5
相关论文
共 50 条
  • [21] Nth-order rogue waves for the AB system via the determinants
    Su, Jing-Jing
    Zhang, Sheng
    APPLIED MATHEMATICS LETTERS, 2021, 112
  • [22] Breather and rogue wave solutions of a generalized nonlinear Schrodinger equation
    Wang, L. H.
    Porsezian, K.
    He, J. S.
    PHYSICAL REVIEW E, 2013, 87 (05):
  • [23] General rogue wave solution to the discrete nonlinear Schrodinger equation
    Ohta, Yasuhiro
    Feng, Bao-Feng
    PHYSICA D-NONLINEAR PHENOMENA, 2022, 439
  • [24] Rogue wave solutions of the nonlinear Schrodinger equation with variable coefficients
    Liu, Changfu
    Li, Yan Yan
    Gao, Meiping
    Wang, Zeping
    Dai, Zhengde
    Wang, Chuanjian
    PRAMANA-JOURNAL OF PHYSICS, 2015, 85 (06): : 1063 - 1072
  • [25] On boundary value problems for an nth-order equation
    N. I. Vasil’ev
    A. Ya. Lepin
    L. A. Lepin
    Differential Equations, 2010, 46 : 182 - 186
  • [26] Three-component nonlinear Schrodinger equations: Modulational instability, Nth-order vector rational and semi-rational rogue waves, and dynamics
    Zhang, Guoqiang
    Yan, Zhenya
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 62 : 117 - 133
  • [27] On boundary value problems for an nth-order equation
    Vasil'ev, N. I.
    Lepin, A. Ya.
    Lepin, L. A.
    DIFFERENTIAL EQUATIONS, 2010, 46 (02) : 182 - 186
  • [28] Second-order nonlinear Schrodinger equation breather solutions in the degenerate and rogue wave limits
    Kedziora, David J.
    Ankiewicz, Adrian
    Akhmediev, Nail
    PHYSICAL REVIEW E, 2012, 85 (06)
  • [29] Systematic study of rogue wave probability distributions in a fourth-order nonlinear Schrodinger equation
    Ying, L. H.
    Kaplan, L.
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2012, 117
  • [30] Rogue wave solutions for the generalized fifth-order nonlinear Schrodinger equation on the periodic background
    Wang, Zijia
    Zhaqilao
    WAVE MOTION, 2022, 108