The height of an nth-order fundamental rogue wave for the nonlinear Schrodinger equation

被引:26
|
作者
Wang, Lihong [1 ,2 ]
Yang, Chenghao [2 ]
Wang, Ji [1 ]
He, Jingsong [3 ]
机构
[1] Ningbo Univ, Sch Mech Engn & Mech, Ningbo, Zhejiang, Peoples R China
[2] SOA, Inst Oceanog 2, State Key Lab Satellite Ocean Environm Dynam, Qingdao, Peoples R China
[3] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China
关键词
Rogue wave; Nonlinear Schrodinger equation; Darboux transformation; DARBOUX TRANSFORMATION; MODULATION INSTABILITY; BREATHERS; OPTICS; HIERARCHY; SYSTEM; NLS;
D O I
10.1016/j.physleta.2017.03.023
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The height of an nth-order fundamental rogue wave q(rw)([n]) for the nonlinear Schrodinger equation, namely (2n + 1)c, is proved directly by a series of row operations on matrices appeared in the n-fold Darboux transformation. Here the positive constant c denotes the height of the asymptotical plane of the rogue wave. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:1714 / 1718
页数:5
相关论文
共 50 条
  • [31] Nth-order nonlinear intensity fluctuation amplifier
    Zhang, Shuanghao
    Zheng, Huaibin
    Wang, Gao
    Chen, Hui
    Liu, Jianbin
    Zhou, Yu
    He, Yuchen
    Luo, Sheng
    Liu, Yanyan
    Xu, Zhuo
    OPTICS COMMUNICATIONS, 2022, 514
  • [32] Nth-order nonlinear intensity fluctuation amplifier
    Zhang, Shuanghao
    Zheng, Huaibin
    Wang, Gao
    Chen, Hui
    Liu, Jianbin
    Zhou, Yu
    He, Yuchen
    Luo, Sheng
    Liu, Yanyan
    Xu, Zhuo
    Optics Communications, 2022, 514
  • [33] An nth-order Darboux transformation for the one-dimensional time-dependent Schrodinger equation
    Arrigo, DJ
    Hickling, F
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (06): : 1615 - 1621
  • [34] Nonlinear Dynamics of Rogue Waves in a Fifth-Order Nonlinear Schrodinger Equation
    Song, Ni
    Xue, Hui
    Zhao, Xiaoying
    IEEE ACCESS, 2020, 8 : 9610 - 9618
  • [35] Wave amplification in the framework of forced nonlinear Schrodinger equation: The rogue wave context
    Slunyaev, Alexey
    Sergeeva, Anna
    Pelinovsky, Efim
    PHYSICA D-NONLINEAR PHENOMENA, 2015, 303 : 18 - 27
  • [36] Nth order generalized Darboux transformation and solitons, breathers and rogue waves in a variable-coefficient coupled nonlinear Schrodinger equation
    Song, N.
    Liu, R.
    Guo, M. M.
    Ma, W. X.
    NONLINEAR DYNAMICS, 2023, 111 (20) : 19347 - 19357
  • [37] Boundary value problem for an nth-order operator equation
    A. Ya. Lepin
    L. A. Lepin
    V. D. Ponomarev
    Differential Equations, 2010, 46 : 452 - 454
  • [38] Breather wave, rogue wave and solitary wave solutions of a coupled nonlinear Schrodinger equation
    Feng, Lian-Li
    Zhang, Tian-Tian
    APPLIED MATHEMATICS LETTERS, 2018, 78 : 133 - 140
  • [39] Positive Solutions of nth-Order Nonlinear Impulsive Differential Equation with Nonlocal Boundary Conditions
    Feng, Meiqiang
    Zhang, Xuemei
    Yang, Xiaozhong
    BOUNDARY VALUE PROBLEMS, 2011,
  • [40] Breathers and Rogue Waves for the Fourth-Order Nonlinear Schrodinger Equation
    Zhang, Yan
    Liu, Yinping
    Tang, Xiaoyan
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2017, 72 (04): : 339 - 344