The height of an nth-order fundamental rogue wave for the nonlinear Schrodinger equation

被引:26
|
作者
Wang, Lihong [1 ,2 ]
Yang, Chenghao [2 ]
Wang, Ji [1 ]
He, Jingsong [3 ]
机构
[1] Ningbo Univ, Sch Mech Engn & Mech, Ningbo, Zhejiang, Peoples R China
[2] SOA, Inst Oceanog 2, State Key Lab Satellite Ocean Environm Dynam, Qingdao, Peoples R China
[3] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China
关键词
Rogue wave; Nonlinear Schrodinger equation; Darboux transformation; DARBOUX TRANSFORMATION; MODULATION INSTABILITY; BREATHERS; OPTICS; HIERARCHY; SYSTEM; NLS;
D O I
10.1016/j.physleta.2017.03.023
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The height of an nth-order fundamental rogue wave q(rw)([n]) for the nonlinear Schrodinger equation, namely (2n + 1)c, is proved directly by a series of row operations on matrices appeared in the n-fold Darboux transformation. Here the positive constant c denotes the height of the asymptotical plane of the rogue wave. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:1714 / 1718
页数:5
相关论文
共 50 条
  • [41] Rogue Waves of the Higher-Order Dispersive Nonlinear Schrodinger Equation
    Wang Xiao-Li
    Zhang Wei-Guo
    Zhai Bao-Guo
    Zhang Hai-Qiang
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2012, 58 (04) : 531 - 538
  • [42] Boundary value problem for an nth-order operator equation
    Lepin, A. Ya.
    Lepin, L. A.
    Ponomarev, V. D.
    DIFFERENTIAL EQUATIONS, 2010, 46 (03) : 452 - 454
  • [43] Rogue wave solutions to the generalized nonlinear Schrodinger equation with variable coefficients
    Zhong, Wei-Ping
    Belic, Milivoj R.
    Huang, Tingwen
    PHYSICAL REVIEW E, 2013, 87 (06):
  • [44] Generalized Darboux transformation and rogue wave solutions for the higher-order dispersive nonlinear Schrodinger equation
    Yang, Bo
    Zhang, Wei-Guo
    Zhang, Hai-Qiang
    Pei, Sheng-Bing
    PHYSICA SCRIPTA, 2013, 88 (06)
  • [45] Rogue Wave Solutions and Generalized Darboux Transformation for an Inhomogeneous Fifth-Order Nonlinear Schrodinger Equation
    Song, N.
    Zhang, W.
    Wang, P.
    Xue, Y. K.
    JOURNAL OF FUNCTION SPACES, 2017, 2017
  • [46] Kuznetsov-Ma rogue wave clusters of the nonlinear Schrodinger equation
    Alwashahi, Sarah
    Aleksic, Najdan B.
    Belic, Milivoj R.
    Nikolic, Stanko N.
    NONLINEAR DYNAMICS, 2023, 111 (13) : 12495 - 12509
  • [47] Nonlinear Schrodinger equation: Generalized Darboux transformation and rogue wave solutions
    Guo, Boling
    Ling, Liming
    Liu, Q. P.
    PHYSICAL REVIEW E, 2012, 85 (02):
  • [48] STUDY ON BREATHER-TYPE ROGUE WAVE BASED ON FOURTH-ORDER NONLINEAR SCHRODINGER EQUATION
    Lu, Wenyue
    Yang, Jianmin
    Lv, Haining
    Li, Xin
    33RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2014, VOL 4B, 2014,
  • [49] THE BEHAVIOR OF AN NTH-ORDER EQUATION WITH 2 MIDDLE TERMS
    KARTSATOS, AG
    KOSMALA, WA
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1982, 88 (02) : 642 - 664
  • [50] The rogue wave of the nonlinear Schrodinger equation with self-consistent sources
    Huang, Yehui
    Jing, Hongqing
    Lin, Runliang
    Yao, Yuqin
    MODERN PHYSICS LETTERS B, 2018, 32 (30):