Breather and rogue wave solutions of a generalized nonlinear Schrodinger equation

被引:116
|
作者
Wang, L. H. [1 ]
Porsezian, K. [2 ]
He, J. S. [1 ]
机构
[1] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China
[2] Pondicherry Univ, Dept Phys, Pondicherry 605014, India
来源
PHYSICAL REVIEW E | 2013年 / 87卷 / 05期
关键词
SOLITON;
D O I
10.1103/PhysRevE.87.053202
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this paper, using the Darboux transformation, we demonstrate the generation of first-order breather and higher-order rogue waves from a generalized nonlinear Schrodinger equation with several higher-order nonlinear effects representing femtosecond pulse propagation through nonlinear silica fiber. The same nonlinear evolution equation can also describe the soliton-type nonlinear excitations in classical Heisenberg spin chain. Such solutions have a parameter gamma(1), denoting the strength of the higher-order effects. From the numerical plots of the rational solutions, the compression effects of the breather and rogue waves produced by gamma(1) are discussed in detail.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Breather and rogue wave solutions of a generalized nonlinear Schrodinger equation (vol 87, 053202, 2013)
    Wang, L. H.
    Porsezian, K.
    He, J. S.
    [J]. PHYSICAL REVIEW E, 2013, 87 (06):
  • [2] Extended generalized Darboux transformation to hybrid rogue wave and breather solutions for a nonlinear Schrodinger equation
    Li, Bang-Qing
    Ma, Yu-Lan
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2020, 386
  • [3] Darboux transformation of a new generalized nonlinear Schrodinger equation: soliton solutions, breather solutions, and rogue wave solutions
    Tang, Yaning
    He, Chunhua
    Zhou, Meiling
    [J]. NONLINEAR DYNAMICS, 2018, 92 (04) : 2023 - 2036
  • [4] Breather wave, rogue wave and solitary wave solutions of a coupled nonlinear Schrodinger equation
    Feng, Lian-Li
    Zhang, Tian-Tian
    [J]. APPLIED MATHEMATICS LETTERS, 2018, 78 : 133 - 140
  • [5] Deformed soliton, breather, and rogue wave solutions of an inhomogeneous nonlinear Schrodinger equation
    Tao Yong-Sheng
    He Jing-Song
    Porsezian, K.
    [J]. CHINESE PHYSICS B, 2013, 22 (07)
  • [6] Rogue wave solutions to the generalized nonlinear Schrodinger equation with variable coefficients
    Zhong, Wei-Ping
    Belic, Milivoj R.
    Huang, Tingwen
    [J]. PHYSICAL REVIEW E, 2013, 87 (06):
  • [7] Nonlinear Schrodinger equation: Generalized Darboux transformation and rogue wave solutions
    Guo, Boling
    Ling, Liming
    Liu, Q. P.
    [J]. PHYSICAL REVIEW E, 2012, 85 (02):
  • [8] On the characterization of breather and rogue wave solutions and modulation instability of a coupled generalized nonlinear Schrodinger equations
    Priya, N. Vishnu
    Senthilvelan, M.
    [J]. WAVE MOTION, 2015, 54 : 125 - 133
  • [9] Second-order nonlinear Schrodinger equation breather solutions in the degenerate and rogue wave limits
    Kedziora, David J.
    Ankiewicz, Adrian
    Akhmediev, Nail
    [J]. PHYSICAL REVIEW E, 2012, 85 (06)
  • [10] Breather and rogue wave solutions of coupled derivative nonlinear Schrodinger equations
    Xiang, Xiao-Shuo
    Zuo, Da-Wei
    [J]. NONLINEAR DYNAMICS, 2022, 107 (01) : 1195 - 1204