An Experiment on Ab Initio Discovery of Biological Knowledge from scRNA-Seq Data Using Machine Learning

被引:3
|
作者
Shah, Najeebullah [1 ,2 ]
Li, Jiaqi [1 ,2 ]
Li, Fanhong [1 ,2 ]
Chen, Wenchang [1 ,2 ]
Gao, Haoxiang [1 ,2 ]
Chen, Sijie [1 ,2 ]
Hua, Kui [1 ,2 ]
Zhang, Xuegong [1 ,2 ,3 ,4 ]
机构
[1] Tsinghua Univ, Dept Automat, MOE Key Lab Bioinformat, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Automat, Bioinformat Div, BNRIST, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Sch Life Sci, Beijing 100084, Peoples R China
[4] Tsinghua Univ, Ctr Synthet & Syst Biol, Beijing 100084, Peoples R China
来源
PATTERNS | 2020年 / 1卷 / 05期
基金
国家重点研发计划;
关键词
RNA-SEQ; DYNAMICS;
D O I
10.1016/j.patter.2020.100071
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Expectations of machine learning (ML) are high for discovering new patterns in high-throughput biological data, but most such practices are accustomed to relying on existing knowledge conditions to design experiments. Investigations of the power and limitation of ML in revealing complex patterns from data without the guide of existing knowledge have been lacking. In this study, we conducted systematic experiments on such ab initio knowledge discovery with ML methods on single-cell RNA-sequencing data of early embryonic development. Results showed that a strategy combining unsupervised and supervised ML can reveal major cell lineages with minimum involvement of prior knowledge or manual intervention, and the ab initio mining enabled a new discovery of human early embryonic cell differentiation. The study illustrated the feasibility, significance, and limitation of ab initio ML knowledge discovery on complex biological problems.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Machine learning and system biology application to scRNA-seq data analysis
    Arbatskiy, Mikhail
    Sysoeva, Veronika
    Rubina, Kseniya
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2024, 32 : 293 - 294
  • [2] Identification of Marker Genes in Infectious Diseases from ScRNA-seq Data Using Interpretable Machine Learning
    Martinez, Gustavo Sganzerla
    Garduno, Alexis
    Ostadgavahi, Ali Toloue
    Hewins, Benjamin
    Dutt, Mansi
    Kumar, Anuj
    Martin-Loeches, Ignacio
    Kelvin, David J.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (11)
  • [3] Wasserstein Graph Convolutional Network with Attention for Imbalanced scRNA-seq Data Knowledge Discovery
    Ren, Jie
    Han, Henry
    RECENT ADVANCES IN NEXT-GENERATION DATA SCIENCE, SDSC 2024, 2024, 2158 : 1 - 16
  • [4] Predicting lung aging using scRNA-Seq data
    Song, Qi
    Singh, Alex
    Mcdonough, John E.
    Adams, Taylor S.
    Vos, Robin
    De Man, Ruben
    Myers, Greg
    Ceulemans, Laurens J.
    Vanaudenaerde, Bart M.
    Wuyts, Wim A.
    Yan, Xiting
    Schuppe, Jonas
    Hagood, James S.
    Kaminski, Naftali
    Bar-Joseph, Ziv
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (12)
  • [5] DoRC: Discovery of rare cells from ultra-large scRNA-seq data
    Chen, Xiang
    Wu, Fang-Xiang
    Chen, Jin
    Li, Min
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 111 - 116
  • [6] Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge
    Mukherjee, Sumit
    Zhang, Yue
    Fan, Joshua
    Seelig, Georg
    Kannan, Sreeram
    BIOINFORMATICS, 2018, 34 (13) : 124 - 132
  • [7] Reconstructing complex lineage trees from scRNA-seq data using MERLoT
    Parra, R. Gonzalo
    Papadopoulos, Nikolaos
    Ahumada-Arranz, Laura
    El Kholtei, Jakob
    Mottelson, Noah
    Horokhovsky, Yehor
    Treutlein, Barbara
    Soeding, Johannes
    NUCLEIC ACIDS RESEARCH, 2019, 47 (17) : 8961 - 8974
  • [8] Cell lineage inference from SNP and scRNA-Seq data
    Ding, Jun
    Lin, Chieh
    Bar-Joseph, Ziv
    NUCLEIC ACIDS RESEARCH, 2019, 47 (10)
  • [9] miRSCAPE - inferring miRNA expression from scRNA-seq data
    Olgun, Gulden
    Gopalan, Vishaka
    Hannenhalli, Sridhar
    ISCIENCE, 2022, 25 (09)
  • [10] Multi-View Clustering With Graph Learning for scRNA-Seq Data
    Wu, Wenming
    Zhang, Wensheng
    Hou, Weimin
    Ma, Xiaoke
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (06) : 3535 - 3546