An Experiment on Ab Initio Discovery of Biological Knowledge from scRNA-Seq Data Using Machine Learning

被引:3
|
作者
Shah, Najeebullah [1 ,2 ]
Li, Jiaqi [1 ,2 ]
Li, Fanhong [1 ,2 ]
Chen, Wenchang [1 ,2 ]
Gao, Haoxiang [1 ,2 ]
Chen, Sijie [1 ,2 ]
Hua, Kui [1 ,2 ]
Zhang, Xuegong [1 ,2 ,3 ,4 ]
机构
[1] Tsinghua Univ, Dept Automat, MOE Key Lab Bioinformat, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Automat, Bioinformat Div, BNRIST, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Sch Life Sci, Beijing 100084, Peoples R China
[4] Tsinghua Univ, Ctr Synthet & Syst Biol, Beijing 100084, Peoples R China
来源
PATTERNS | 2020年 / 1卷 / 05期
基金
国家重点研发计划;
关键词
RNA-SEQ; DYNAMICS;
D O I
10.1016/j.patter.2020.100071
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Expectations of machine learning (ML) are high for discovering new patterns in high-throughput biological data, but most such practices are accustomed to relying on existing knowledge conditions to design experiments. Investigations of the power and limitation of ML in revealing complex patterns from data without the guide of existing knowledge have been lacking. In this study, we conducted systematic experiments on such ab initio knowledge discovery with ML methods on single-cell RNA-sequencing data of early embryonic development. Results showed that a strategy combining unsupervised and supervised ML can reveal major cell lineages with minimum involvement of prior knowledge or manual intervention, and the ab initio mining enabled a new discovery of human early embryonic cell differentiation. The study illustrated the feasibility, significance, and limitation of ab initio ML knowledge discovery on complex biological problems.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Identification of cell subpopulations associated with disease phenotypes from scRNA-seq data using PACSI
    Chonghui Liu
    Yan Zhang
    Xin Gao
    Guohua Wang
    BMC Biology, 21
  • [32] Applying SCALEX scRNA-Seq Data Integration for Precise Alzheimer's Disease Biomarker Discovery
    Vrahatis, Aristidis G.
    Lazaros, Konstantinos
    Paplomatas, Petros
    Krokidis, Marios G.
    Exarchos, Themis
    Vlamos, Panagiotis
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS. AIAI 2023 IFIP WG 12.5 INTERNATIONAL WORKSHOPS, 2023, 677 : 294 - 302
  • [33] Obstacles to detecting isoforms using full-length scRNA-seq data
    Jennifer Westoby
    Pavel Artemov
    Martin Hemberg
    Anne Ferguson-Smith
    Genome Biology, 21
  • [34] Automatically Detecting Anchor Cells and Clustering for scRNA-Seq Data Using scTSNN
    Liu, Qiaoming
    Zhang, Dandan
    Wang, Dong
    Wang, Guohua
    Wang, Yadong
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (11) : 7015 - 7027
  • [35] Accurate and interpretable gene expression imputation on scRNA-seq data using IGSimpute
    Xu, Ke
    Cheong, ChinWang
    Veldsman, Werner P.
    Lyu, Aiping
    Cheung, William K.
    Zhang, Lu
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (03)
  • [36] A machine learning framework for scRNA-seq UMI threshold optimization and accurate classification of cell types
    Bishara, Isaac
    Chen, Jinfeng
    Griffiths, Jason I.
    Bild, Andrea H.
    Nath, Aritro
    FRONTIERS IN GENETICS, 2022, 13
  • [37] Evaluation of T Cell Receptor Construction Methods from scRNA-Seq Data
    Tian, Ruonan
    Yu, Zhejian
    Xue, Ziwei
    Wu, Jiaxin
    Wu, Lize
    Cai, Shuo
    Gao, Bing
    He, Bing
    Zhao, Yu
    Yao, Jianhua
    Lu, Linrong
    Liu, Wanlu
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2025, 22 (06):
  • [38] Discovering single-cell eQTLs from scRNA-seq data only
    Ma, Tianxing
    Li, Haochen
    Zhang, Xuegong
    GENE, 2022, 829
  • [39] DeepIMAGER: Deeply Analyzing Gene Regulatory Networks from scRNA-seq Data
    Zhou, Xiguo
    Pan, Jingyi
    Chen, Liang
    Zhang, Shaoqiang
    Chen, Yong
    BIOMOLECULES, 2024, 14 (07)
  • [40] A statistical approach for systematic identification of transition cells from scRNA-seq data
    Wang, Yuanxin
    Dede, Merve
    Mohanty, Vakul
    Dou, Jinzhuang
    Li, Ziyi
    Chen, Ken
    CELL REPORTS METHODS, 2024, 4 (12):