An Experiment on Ab Initio Discovery of Biological Knowledge from scRNA-Seq Data Using Machine Learning

被引:3
|
作者
Shah, Najeebullah [1 ,2 ]
Li, Jiaqi [1 ,2 ]
Li, Fanhong [1 ,2 ]
Chen, Wenchang [1 ,2 ]
Gao, Haoxiang [1 ,2 ]
Chen, Sijie [1 ,2 ]
Hua, Kui [1 ,2 ]
Zhang, Xuegong [1 ,2 ,3 ,4 ]
机构
[1] Tsinghua Univ, Dept Automat, MOE Key Lab Bioinformat, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Automat, Bioinformat Div, BNRIST, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Sch Life Sci, Beijing 100084, Peoples R China
[4] Tsinghua Univ, Ctr Synthet & Syst Biol, Beijing 100084, Peoples R China
来源
PATTERNS | 2020年 / 1卷 / 05期
基金
国家重点研发计划;
关键词
RNA-SEQ; DYNAMICS;
D O I
10.1016/j.patter.2020.100071
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Expectations of machine learning (ML) are high for discovering new patterns in high-throughput biological data, but most such practices are accustomed to relying on existing knowledge conditions to design experiments. Investigations of the power and limitation of ML in revealing complex patterns from data without the guide of existing knowledge have been lacking. In this study, we conducted systematic experiments on such ab initio knowledge discovery with ML methods on single-cell RNA-sequencing data of early embryonic development. Results showed that a strategy combining unsupervised and supervised ML can reveal major cell lineages with minimum involvement of prior knowledge or manual intervention, and the ab initio mining enabled a new discovery of human early embryonic cell differentiation. The study illustrated the feasibility, significance, and limitation of ab initio ML knowledge discovery on complex biological problems.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Visualizing hierarchies in scRNA-seq data using a density tree-biased autoencoder
    Garrido, Quentin
    Damrich, Sebastian
    Jager, Alexander
    Cerletti, Dario
    Claassen, Manfred
    Najman, Laurent
    Hamprecht, Fred A.
    BIOINFORMATICS, 2022, 38 (SUPPL 1) : 316 - 324
  • [42] scNCL: transferring labels from scRNA-seq to scATAC-seq data with neighborhood contrastive regularization
    Yan, Xuhua
    Zheng, Ruiqing
    Chen, Jinmiao
    Li, Min
    BIOINFORMATICS, 2023, 39 (08)
  • [43] scMRA: a robust deep learning method to annotate scRNA-seq data with multiple reference datasets
    Yuan, Musu
    Chen, Liang
    Deng, Minghua
    BIOINFORMATICS, 2022, 38 (03) : 738 - 745
  • [44] MLSpatial: A machine-learning method to reconstruct the spatial distribution of cells from scRNA-seq by extracting spatial features
    Zhu, Mengbo
    Li, Changjun
    Lv, Kebo
    Guo, Hongzhe
    Hou, Rui
    Tian, Geng
    Yang, Jialiang
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 159
  • [45] scDeepInsight: a supervised cell-type identification method for scRNA-seq data with deep learning
    Jia, Shangru
    Lysenko, Artem
    Boroevich, Keith A.
    Sharma, Alok
    Tsunoda, Tatsuhiko
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (05)
  • [46] Unveiling the molecular complexity of proliferative diabetic retinopathy through scRNA-seq, AlphaFold 2, and machine learning
    Wang, Jun
    Sun, Hongyan
    Mou, Lisha
    Lu, Ying
    Wu, Zijing
    Pu, Zuhui
    Yang, Ming-ming
    FRONTIERS IN ENDOCRINOLOGY, 2024, 15
  • [47] scAlign: a tool for alignment, integration, and rare cell identification from scRNA-seq data
    Nelson Johansen
    Gerald Quon
    Genome Biology, 20
  • [48] scDART: integrating unmatched scRNA-seq and scATAC-seq data and learning cross-modality relationship simultaneously
    Ziqi Zhang
    Chengkai Yang
    Xiuwei Zhang
    Genome Biology, 23
  • [49] scAlign: a tool for alignment, integration, and rare cell identification from scRNA-seq data
    Johansen, Nelson
    Quon, Gerald
    GENOME BIOLOGY, 2019, 20 (01):
  • [50] SCReadCounts: estimation of cell-level SNVs expression from scRNA-seq data
    N. M. Prashant
    Nawaf Alomran
    Yu Chen
    Hongyu Liu
    Pavlos Bousounis
    Mercedeh Movassagh
    Nathan Edwards
    Anelia Horvath
    BMC Genomics, 22