An Experiment on Ab Initio Discovery of Biological Knowledge from scRNA-Seq Data Using Machine Learning

被引:3
|
作者
Shah, Najeebullah [1 ,2 ]
Li, Jiaqi [1 ,2 ]
Li, Fanhong [1 ,2 ]
Chen, Wenchang [1 ,2 ]
Gao, Haoxiang [1 ,2 ]
Chen, Sijie [1 ,2 ]
Hua, Kui [1 ,2 ]
Zhang, Xuegong [1 ,2 ,3 ,4 ]
机构
[1] Tsinghua Univ, Dept Automat, MOE Key Lab Bioinformat, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Automat, Bioinformat Div, BNRIST, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Sch Life Sci, Beijing 100084, Peoples R China
[4] Tsinghua Univ, Ctr Synthet & Syst Biol, Beijing 100084, Peoples R China
来源
PATTERNS | 2020年 / 1卷 / 05期
基金
国家重点研发计划;
关键词
RNA-SEQ; DYNAMICS;
D O I
10.1016/j.patter.2020.100071
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Expectations of machine learning (ML) are high for discovering new patterns in high-throughput biological data, but most such practices are accustomed to relying on existing knowledge conditions to design experiments. Investigations of the power and limitation of ML in revealing complex patterns from data without the guide of existing knowledge have been lacking. In this study, we conducted systematic experiments on such ab initio knowledge discovery with ML methods on single-cell RNA-sequencing data of early embryonic development. Results showed that a strategy combining unsupervised and supervised ML can reveal major cell lineages with minimum involvement of prior knowledge or manual intervention, and the ab initio mining enabled a new discovery of human early embryonic cell differentiation. The study illustrated the feasibility, significance, and limitation of ab initio ML knowledge discovery on complex biological problems.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] PieParty: visualizing cells from scRNA-seq data as pie charts
    Kurtenbach, Stefan
    Dollar, James J.
    Cruz, Anthony M.
    Durante, Michael A.
    Decatur, Christina L.
    Harbour, J. William
    LIFE SCIENCE ALLIANCE, 2021, 4 (05)
  • [22] Integration of scRNA-seq data by disentangled representation learning with condition domain adaptation
    Liu, Renjing
    Qian, Kun
    He, Xinwei
    Li, Hongwei
    BMC BIOINFORMATICS, 2024, 25 (01)
  • [23] Deep enhanced constraint clustering based on contrastive learning for scRNA-seq data
    Gan, Yanglan
    Chen, Yuhan
    Xu, Guangwei
    Guo, Wenjing
    Zou, Guobing
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (04)
  • [24] BreCML: identifying breast cancer cell state in scRNA-seq via machine learning
    Ke, Shanbao
    Huang, Yuxuan
    Wang, Dong
    Jiang, Qiang
    Luo, Zhangyang
    Li, Baiyu
    Yan, Danfang
    Zhou, Jianwei
    FRONTIERS IN MEDICINE, 2024, 11
  • [25] scInterpreter: a knowledge-regularized generative model for interpretably integrating scRNA-seq data
    Zhen-Hao Guo
    Yan Wu
    Siguo Wang
    Qinhu Zhang
    Jin-Ming Shi
    Yan-Bin Wang
    Zhan-Heng Chen
    BMC Bioinformatics, 24
  • [26] scInterpreter: a knowledge-regularized generative model for interpretably integrating scRNA-seq data
    Guo, Zhen-Hao
    Wu, Yan
    Wang, Siguo
    Zhang, Qinhu
    Shi, Jin-Ming
    Wang, Yan-Bin
    Chen, Zhan-Heng
    BMC BIOINFORMATICS, 2023, 24 (01)
  • [27] Identification of cell subpopulations associated with disease phenotypes from scRNA-seq data using PACSI
    Liu, Chonghui
    Zhang, Yan
    Gao, Xin
    Wang, Guohua
    BMC BIOLOGY, 2023, 21 (01)
  • [28] A deep learning framework for denoising and ordering scRNA-seq data using adversarial autoencoder with dynamic batching
    Ko, Kyung Dae
    Sartorelli, Vittorio
    STAR PROTOCOLS, 2024, 5 (02):
  • [29] Gene Regulatory Network Inference Using Convolutional Neural Networks from scRNA-seq Data
    Mao, Guo
    Pang, Zhengbin
    Zuo, Ke
    Liu, Jie
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2023, 30 (05) : 619 - 631
  • [30] Obstacles to detecting isoforms using full-length scRNA-seq data
    Westoby, Jennifer
    Artemov, Pavel
    Hemberg, Martin
    Ferguson-Smith, Anne
    GENOME BIOLOGY, 2020, 21 (01)