Reconstructing complex lineage trees from scRNA-seq data using MERLoT

被引:15
|
作者
Parra, R. Gonzalo [1 ,2 ]
Papadopoulos, Nikolaos [1 ]
Ahumada-Arranz, Laura [1 ]
El Kholtei, Jakob [1 ]
Mottelson, Noah [1 ]
Horokhovsky, Yehor [1 ]
Treutlein, Barbara [3 ,4 ]
Soeding, Johannes [1 ]
机构
[1] Max Planck Inst Biophys Chem, Quantitat & Computat Biol Grp, Fassberg 11, D-37077 Gottingen, Germany
[2] European Mol Biol Lab, Genome Biol Unit, Meyerhofstr 1, D-69117 Heidelberg, Germany
[3] Max Planck Inst Evolutionary Anthropol, Dept Evolutionary Genet, Deutsch Pl 6, D-04103 Leipzig, Germany
[4] Swiss Fed Inst Technol, Dept Biosyst Sci & Engn, Zurich, Switzerland
关键词
CELL FATE DECISIONS; COMMITMENT;
D O I
10.1093/nar/gkz706
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Advances in single-cell transcriptomics techniques are revolutionizing studies of cellular differentiation and heterogeneity. It has become possible to track the trajectory of thousands of genes across the cellular lineage trees that represent the temporal emergence of cell types during dynamic processes. However, reconstruction of cellular lineage trees with more than a few cell fates has proved challenging. We present MERLoT (https://github.com/soedinglab/ merlot), a flexible and user-friendly tool to reconstruct complex lineage trees from single-cell transcriptomics data. It can impute temporal gene expression profiles along the reconstructed tree. We show MERLoT's capabilities on various real cases and hundreds of simulated datasets.
引用
收藏
页码:8961 / 8974
页数:14
相关论文
共 50 条
  • [1] Cell lineage inference from SNP and scRNA-Seq data
    Ding, Jun
    Lin, Chieh
    Bar-Joseph, Ziv
    [J]. NUCLEIC ACIDS RESEARCH, 2019, 47 (10)
  • [2] Predicting lung aging using scRNA-Seq data
    Song, Qi
    Singh, Alex
    McDonough, John E.
    Adams, Taylor S.
    Vos, Robin
    De Man, Ruben
    Myers, Greg
    Ceulemans, Laurens J.
    Vanaudenaerde, Bart M.
    Wuyts, Wim A.
    Yan, Xiting
    Schuppe, Jonas
    Hagood, James S.
    Kaminski, Naftali
    Bar-Joseph, Ziv
    [J]. PLoS Computational Biology, 2024, 20 (12)
  • [3] pyNVR: investigating factors affecting feature selection from scRNA-seq data for lineage reconstruction
    Chen, Bob
    Herring, Charles A.
    Lau, Ken S.
    [J]. BIOINFORMATICS, 2019, 35 (13) : 2335 - 2337
  • [4] Computational approaches for interpreting scRNA-seq data
    Rostom, Raghd
    Svensson, Valentine
    Teichmann, Sarah A.
    Kar, Gozde
    [J]. FEBS LETTERS, 2017, 591 (15) : 2213 - 2225
  • [5] miRSCAPE - inferring miRNA expression from scRNA-seq data
    Olgun, Gulden
    Gopalan, Vishaka
    Hannenhalli, Sridhar
    [J]. ISCIENCE, 2022, 25 (09)
  • [6] Cerebro: interactive visualization of scRNA-seq data
    Hillje, Roman
    Pelicci, Pier Giuseppe
    Luzi, Lucilla
    [J]. BIOINFORMATICS, 2020, 36 (07) : 2311 - 2313
  • [7] In Silico Drug Repurposing in Multiple Sclerosis Using scRNA-Seq Data
    Shevtsov, Andrey
    Raevskiy, Mikhail
    Stupnikov, Alexey
    Medvedeva, Yulia
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (02)
  • [8] Mining alternative splicing patterns in scRNA-seq data using scASfind
    Song, Yuyao
    Parada, Guillermo
    Lee, Jimmy Tsz Hang
    Hemberg, Martin
    [J]. GENOME BIOLOGY, 2024, 25 (01):
  • [9] Imputation in Scrna-seq Data Using Supervised Deep Generative Networks
    Tang, Jianxiong
    Zou, Jianxiao
    Fan, Mei
    Tian, Qi
    Fan, Shicai
    [J]. 2021 8TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS RESEARCH AND APPLICATIONS, ICBRA 2021, 2021, : 1 - 7
  • [10] Domain adaptation for supervised integration of scRNA-seq data
    Sun, Yutong
    Qiu, Peng
    [J]. COMMUNICATIONS BIOLOGY, 2023, 6 (01)