Adaptive Parameter Estimation of Power System Dynamic Model Using Modal Information

被引:30
|
作者
Guo, Song [1 ]
Norris, Sean [2 ]
Bialek, Janusz [2 ]
机构
[1] London Power Associates Ltd, Manchester, Lancs, England
[2] Univ Durham, Sch Engn & Comp Sci, Durham, England
基金
英国工程与自然科学研究理事会;
关键词
Dynamic power system modeling; parameter estimation; small signal analysis; synchronous generators; wide area measurements; ROBUST RLS METHODS; ONLINE ESTIMATION; ELECTROMECHANICAL MODES;
D O I
10.1109/TPWRS.2014.2316916
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel method for estimating parameters of a dynamic system model is presented using estimates of dynamic system modes (frequency and damping) obtained from wide area measurement systems (WAMS). The parameter estimation scheme is based on weighted least squares (WLS) method that utilizes sensitivities of the measured modal frequencies and damping to the parameters. The paper concentrates on estimating the values of generator inertias but the proposed methodology is general and can be used to identify other generator parameters such as damping coefficients. The methodology has been tested using a wide range of accuracy in the measured modes of oscillations. The results suggest that the methodology is capable of estimating accurately inertias and replicating the dynamic behavior of the power system. It has been shown that the damping measurements do not influence estimation of generator inertia. The method has overcome the problem of observability, when there were fewer measurements than the parameters to be estimated, by including the assumed values of parameters as pseudo-measurements.
引用
收藏
页码:2854 / 2861
页数:8
相关论文
共 50 条
  • [31] Parameter estimation for an induction motor dynamic model using genetic algorithms
    Guangdong Univ of Technology, Guangzhou, China
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2000, 20 (08): : 37 - 41
  • [32] Adaptive parameter estimation for the expanded sandwich model
    Guanglu Yang
    Huanlong Zhang
    Yubao Liu
    Qingling Sun
    Jianwei Qiao
    Scientific Reports, 13 (1)
  • [33] Parameter Estimation of Loranz Chaotic Dynamic System Using Bees Algorithm
    Gholipour, R.
    Khosravi, A.
    Mojallali, H.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2013, 26 (03): : 257 - 262
  • [34] Adaptive parameter estimation for the expanded sandwich model
    Yang, Guanglu
    Zhang, Huanlong
    Liu, Yubao
    Sun, Qingling
    Qiao, Jianwei
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [35] Fast estimation of power system frequency using adaptive internal-model control technique
    Zhao, ZY
    Brown, L
    2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 845 - 850
  • [36] Power System Frequency Estimation Using Adaptive Accelerated MUSIC
    Jafarpisheh, Babak
    Madani, Seyed M.
    Parvaresh, Farzad
    Shahrtash, S. Mohammad
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2018, 67 (11) : 2592 - 2602
  • [37] Estimation of power system frequency using adaptive notch filters
    Dash, PK
    Mishra, BR
    Jena, RK
    Liew, AC
    PROCEEDINGS OF EMPD '98 - 1998 INTERNATIONAL CONFERENCE ON ENERGY MANAGEMENT AND POWER DELIVERY, VOLS 1 AND 2 AND SUPPLEMENT, 1998, : 143 - 148
  • [38] Estimation of power system frequency using an adaptive notch filter
    Mojiri, Mohsen
    Karimi-Ghartemani, Masoud
    Bakhshai, Alireza
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2007, 56 (06) : 2470 - 2477
  • [39] Estimation of power system frequency using adaptive notch filters
    Regional Engineering Coll, Rourkela, India
    Proc Int Conf Energy Manage Power Delivery EMPD, (143-148):
  • [40] Modal reduced dynamic equivalent model for analog type power system simulator
    Nojiri, K
    Suzaki, S
    Takenaka, K
    Goto, M
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1997, 12 (04) : 1518 - 1523