Adaptive Parameter Estimation of Power System Dynamic Model Using Modal Information

被引:30
|
作者
Guo, Song [1 ]
Norris, Sean [2 ]
Bialek, Janusz [2 ]
机构
[1] London Power Associates Ltd, Manchester, Lancs, England
[2] Univ Durham, Sch Engn & Comp Sci, Durham, England
基金
英国工程与自然科学研究理事会;
关键词
Dynamic power system modeling; parameter estimation; small signal analysis; synchronous generators; wide area measurements; ROBUST RLS METHODS; ONLINE ESTIMATION; ELECTROMECHANICAL MODES;
D O I
10.1109/TPWRS.2014.2316916
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel method for estimating parameters of a dynamic system model is presented using estimates of dynamic system modes (frequency and damping) obtained from wide area measurement systems (WAMS). The parameter estimation scheme is based on weighted least squares (WLS) method that utilizes sensitivities of the measured modal frequencies and damping to the parameters. The paper concentrates on estimating the values of generator inertias but the proposed methodology is general and can be used to identify other generator parameters such as damping coefficients. The methodology has been tested using a wide range of accuracy in the measured modes of oscillations. The results suggest that the methodology is capable of estimating accurately inertias and replicating the dynamic behavior of the power system. It has been shown that the damping measurements do not influence estimation of generator inertia. The method has overcome the problem of observability, when there were fewer measurements than the parameters to be estimated, by including the assumed values of parameters as pseudo-measurements.
引用
收藏
页码:2854 / 2861
页数:8
相关论文
共 50 条
  • [21] State and Parameter Estimation of Power Systems using Phasor Measurement Units as Bilinear System Model
    Kumar, Rajnish
    Giesselmann, Michael G.
    He, Miao
    INTERNATIONAL JOURNAL OF RENEWABLE ENERGY RESEARCH, 2016, 6 (04): : 1373 - 1384
  • [22] Acoustic Model Parameter Estimation Using Distributed Incremental Adaptive Networks
    Taheri, Sayed Mostafa
    Nosrati, Hamed
    2015 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATION (ISCC), 2015, : 471 - 476
  • [23] Dynamic harmonic state estimation of a power system based on adaptive SRUKF
    Zhang M.
    Xu S.
    Lu D.
    Xia R.
    He
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2023, 51 (02): : 102 - 111
  • [24] Dynamic viseme model and parameter estimation
    Wang, Zhi-Ming
    Cai, Lian-Hong
    Ruan Jian Xue Bao/Journal of Software, 2003, 14 (03): : 461 - 466
  • [25] Dynamic parameter estimation for hydrological model
    Singh S.K.
    International Journal of Hydrology Science and Technology, 2019, 9 (02) : 124 - 136
  • [26] Modal parameter estimation using the state space method
    Liu, K
    JOURNAL OF SOUND AND VIBRATION, 1996, 197 (04) : 387 - 402
  • [27] Modal parameter estimation using interacting Kalman filter
    Zghal, Meriem
    Mevel, Laurent
    Del Moral, Pierre
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2014, 47 (1-2) : 139 - 150
  • [28] Power system parameter estimation:: A survey
    Zarco, P
    Expósito, AG
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2000, 15 (01) : 216 - 222
  • [29] Power system network parameter estimation
    Quintana, V.H.
    van Cutsem, Th.
    Optimal Control Applications and Methods, 1988, 9 (03) : 303 - 323
  • [30] HYDROLOGIC PARAMETER-ESTIMATION USING GEOGRAPHIC INFORMATION-SYSTEM
    BHASKAR, NR
    JAMES, WP
    DEVULAPALLI, RS
    JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT-ASCE, 1992, 118 (05): : 492 - 512