Adaptive Parameter Estimation of Power System Dynamic Model Using Modal Information

被引:30
|
作者
Guo, Song [1 ]
Norris, Sean [2 ]
Bialek, Janusz [2 ]
机构
[1] London Power Associates Ltd, Manchester, Lancs, England
[2] Univ Durham, Sch Engn & Comp Sci, Durham, England
基金
英国工程与自然科学研究理事会;
关键词
Dynamic power system modeling; parameter estimation; small signal analysis; synchronous generators; wide area measurements; ROBUST RLS METHODS; ONLINE ESTIMATION; ELECTROMECHANICAL MODES;
D O I
10.1109/TPWRS.2014.2316916
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel method for estimating parameters of a dynamic system model is presented using estimates of dynamic system modes (frequency and damping) obtained from wide area measurement systems (WAMS). The parameter estimation scheme is based on weighted least squares (WLS) method that utilizes sensitivities of the measured modal frequencies and damping to the parameters. The paper concentrates on estimating the values of generator inertias but the proposed methodology is general and can be used to identify other generator parameters such as damping coefficients. The methodology has been tested using a wide range of accuracy in the measured modes of oscillations. The results suggest that the methodology is capable of estimating accurately inertias and replicating the dynamic behavior of the power system. It has been shown that the damping measurements do not influence estimation of generator inertia. The method has overcome the problem of observability, when there were fewer measurements than the parameters to be estimated, by including the assumed values of parameters as pseudo-measurements.
引用
收藏
页码:2854 / 2861
页数:8
相关论文
共 50 条
  • [41] ELECTRIC-POWER SYSTEM STATIC LOAD MODEL PARAMETER-ESTIMATION USING NEWTON METHOD
    DIAS, LG
    ELHAWARY, ME
    ELECTRIC MACHINES AND POWER SYSTEMS, 1988, 14 (05): : 317 - 328
  • [42] Grid Parameter Estimation Using Model Predictive Direct Power Control
    Arif, Bilal
    Tarisciotti, Luca
    Zanchetta, Pericle
    Clare, Jon C.
    Degano, Andmarco
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2015, 51 (06) : 4614 - 4622
  • [43] Model order determination and noise removal for modal parameter estimation
    Hu, Sau-Lon James
    Bao, Xingxian
    Li, Huajun
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2010, 24 (06) : 1605 - 1620
  • [44] Robust Parameter Estimation of the French Power System Using Field Data
    Zhao, Junbo
    Fliscounakis, Stephane
    Panciatici, Patrick
    Mili, Lamine
    IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (05) : 5334 - 5344
  • [45] Adaptive Robust State Estimation for Power System Based on Dynamic Partitioning and Multiple Estimation Criteria
    Yu W.
    Huang M.
    Wei Z.
    Sun G.
    Duan F.
    Liu R.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2021, 45 (19): : 173 - 180
  • [46] A new method for model order selection and modal parameter estimation
    Lardies, J
    Larbi, N
    IMAC-XVIII: A CONFERENCE ON STRUCTURAL DYNAMICS, VOLS 1 AND 2, PROCEEDINGS, 2000, 4062 : 793 - 799
  • [47] Equivalent linear modal parameter estimation for a nonlinear aeroelastic system
    Marsden, CC
    Price, SJ
    JOURNAL OF FLUIDS AND STRUCTURES, 2004, 19 (05) : 607 - 619
  • [48] The MLMM modal parameter estimation method: A new feature to maximize modal model robustness
    El-Kafafy, Mahmoud
    Peeters, Bart
    Geluk, Theo
    Guillaume, Patrick
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 120 : 465 - 485
  • [49] Adaptive Robust Unscented Kalman Filter for Power System Dynamic State Estimation
    Liu, Xinghua
    Guan, Jianwei
    Gao, Xiang
    Wang, Yuanzhe
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 6793 - 6798
  • [50] Dynamic state estimation for power system based on an adaptive unscented Kalman filter
    Zhao, H. (zhaohshcn@126.com), 1600, Power System Technology Press (38):