Modal parameter estimation using the state space method

被引:25
|
作者
Liu, K
机构
[1] Department of Engineering, Dalhousie University, Halifax
关键词
D O I
10.1006/jsvi.1996.0539
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In modal parameter identification, the damped complex exponential response methods extract modal parameters using free decay responses. Although there are several different complex exponential methods, they are based on the Prony method. The Prony method has some limitations, such as poor robustness to noise, computational burden and the unstable nature of root solver routines. Recent developments in signal processing indicate that model-based eigendecomposition methods are very viable alternatives. In this paper one of the model-based eigendecomposition methods, the state space method, is first introduced. The state space method makes use of the singular value decomposition (SVD) to form a well-conditioned data matrix and obtains the modal parameters through the eigendecomposition of the data matrix. The paper then focuses on an analytical derivation of the SVD of the data matrix in order to present a theoretical base for the method. A simulation is used to illustrate important properties of the SVD and performance of the state space method. Finally, more applications of the SVD of the data matrix are explored and the proposed applications are demonstrated by a modal testing example. It is shown that the state space method provides an elegant and robust tool for extracting modal parameters. The SVD of the data matrix offers significant information about the system order and mode participation of a free response. (C) 1996 Academic Press Limited
引用
收藏
页码:387 / 402
页数:16
相关论文
共 50 条
  • [1] STATE-SPACE FORMULATION - A SOLUTION TO MODAL PARAMETER-ESTIMATION
    PREVOSTO, M
    OLAGNON, M
    BENVENISTE, A
    BASSEVILLE, M
    LEVEY, G
    JOURNAL OF SOUND AND VIBRATION, 1991, 148 (02) : 329 - 342
  • [2] Modal parameter identification using state space mode isolation
    Drexel, MV
    Ginsberg, JH
    PROCEEDINGS OF IMAC-XIX: A CONFERENCE ON STRUCTURAL DYNAMICS, VOLS 1 AND 2, 2001, 4359 : 1662 - 1668
  • [3] Modal Parameter Estimation using Synchrophasors
    Fraschini, Agustin
    Sena, Celia
    2015 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES LATIN AMERICA (ISGT LATAM), 2015, : 503 - 507
  • [4] Variable residue method for modal parameter estimation
    Lin, RM
    Lim, MK
    Liew, KM
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 1995, 117 (04): : 392 - 397
  • [5] Modal parameter estimation: An approach using cumulants
    Joseph, L
    Noureddine, L
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2003, 17 (02) : 433 - 442
  • [6] ISAR Motion Parameter Estimation Using State-Space Modeling
    Adjrad, Mounir
    Woodbridge, Karl
    2012 IEEE RADAR CONFERENCE (RADAR), 2012,
  • [7] A multivariate maximum likelihood method for modal parameter estimation
    Lardies, J
    Larbi, N
    STRUCTURAL DYNAMICS, VOLS 1 AND 2, 1999, : 163 - 168
  • [8] Modal parameter identification by an iterative approach and by the state space model
    Lardies, Joseph
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 95 : 239 - 251
  • [9] Modal parameter identification based on ARMAV and state–space approaches
    Joseph Lardies
    Archive of Applied Mechanics, 2010, 80 : 335 - 352
  • [10] Control of large space structures using GPS - Modal parameter identification and attitude and deformation estimation
    Harigae, M
    Yamaguchi, I
    Kasai, T
    Igawa, H
    Suzuki, T
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART I-COMMUNICATIONS, 2003, 86 (04): : 63 - 71