Modal parameter estimation using the state space method

被引:25
|
作者
Liu, K
机构
[1] Department of Engineering, Dalhousie University, Halifax
关键词
D O I
10.1006/jsvi.1996.0539
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In modal parameter identification, the damped complex exponential response methods extract modal parameters using free decay responses. Although there are several different complex exponential methods, they are based on the Prony method. The Prony method has some limitations, such as poor robustness to noise, computational burden and the unstable nature of root solver routines. Recent developments in signal processing indicate that model-based eigendecomposition methods are very viable alternatives. In this paper one of the model-based eigendecomposition methods, the state space method, is first introduced. The state space method makes use of the singular value decomposition (SVD) to form a well-conditioned data matrix and obtains the modal parameters through the eigendecomposition of the data matrix. The paper then focuses on an analytical derivation of the SVD of the data matrix in order to present a theoretical base for the method. A simulation is used to illustrate important properties of the SVD and performance of the state space method. Finally, more applications of the SVD of the data matrix are explored and the proposed applications are demonstrated by a modal testing example. It is shown that the state space method provides an elegant and robust tool for extracting modal parameters. The SVD of the data matrix offers significant information about the system order and mode participation of a free response. (C) 1996 Academic Press Limited
引用
收藏
页码:387 / 402
页数:16
相关论文
共 50 条
  • [41] Noise Moment and Parameter Estimation of State-Space Model
    Kost, Oliver
    Dunik, Jindrich
    Straka, Ondrej
    IFAC PAPERSONLINE, 2018, 51 (15): : 891 - 896
  • [42] States based iterative parameter estimation for a state space model with multi-state delays using decomposition
    Gu, Ya
    Ding, Feng
    Li, Junhong
    SIGNAL PROCESSING, 2015, 106 : 294 - 300
  • [43] Estimation of solubility parameter using equations of state
    Goharshadi, EK
    Hesabi, M
    JOURNAL OF MOLECULAR LIQUIDS, 2004, 113 (1-3) : 125 - 132
  • [44] Multi-innovation parameter and state estimation for multivariable state space systems
    Wang, Xuehai
    Zhu, Fang
    Huang, Fenglin
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2019, 32 (3-4) : 274 - 279
  • [45] State and parameter estimation using unconstrained optimization
    Schumann-Bischoff, Jan
    Parlitz, Ulrich
    PHYSICAL REVIEW E, 2011, 84 (05):
  • [46] The streamflow estimation using the Xinanjiang rainfall runoff model and dual state-parameter estimation method
    Lu, Haishen
    Hou, Ting
    Horton, Robert
    Zhu, Yonghua
    Chen, Xi
    Jia, Yangwen
    Wang, Wen
    Fu, Xiaolei
    JOURNAL OF HYDROLOGY, 2013, 480 : 102 - 114
  • [47] Evolving autonomous modal parameter estimation
    Chhipwadia, K.S.
    Zimmerman, D.C.
    James III, G.H.
    Shock and Vibration Digest, 2000, 32 (01):
  • [48] Modal parameter estimation of rotating machinery
    Pottie, K
    Matthijssen, JGA
    Norbart, CJJ
    Gielen, LJP
    SEVENTH EUROPEAN CONGRESS ON FLUID MACHINERY FOR THE OIL, PETROCHEMICAL, AND RELATED INDUSTRIES, 1999, 1999 (02): : 157 - 176
  • [49] A new procedure for modal parameter estimation
    Peeters, B
    Lowet, G
    Van der Auweraer, H
    Leuridan, J
    SOUND AND VIBRATION, 2004, 38 (01): : 24 - 29
  • [50] Evolving autonomous modal parameter estimation
    Chhipwadia, KS
    Zimmerman, DC
    James, GH
    IMAC - PROCEEDINGS OF THE 17TH INTERNATIONAL MODAL ANALYSIS CONFERENCE, VOLS I AND II, 1999, 3727 : 819 - 825