Adaptive parameter estimation for the expanded sandwich model

被引:0
|
作者
Guanglu Yang
Huanlong Zhang
Yubao Liu
Qingling Sun
Jianwei Qiao
机构
[1] Nanyang Cigarette Factory of Henan China Tobacco Industry Co.,College of Electrical and Information Engineering
[2] Ltd,undefined
[3] Zhengzhou University of Light Industry,undefined
[4] Wolong Electric Nanyang explosion proof motor Group Co.,undefined
[5] Ltd,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
An expanded-sandwich system is a nonlinear extended block-oriented system in which memoryless elements in conventional block-oriented systems are displaced by memory submodels. Expanded-sandwich system identification has received extensive attention in recent years due to the powerful ability of these systems to describe actual industrial systems. This study proposes a novel recursive identification algorithm for an expanded-sandwich system, in which an estimator is developed on the basis of parameter identification error data rather than the traditional prediction error output information. In this scheme, a filter is introduced to extract the available system information based on miserly structure layout, and some intermediate variables are designed using filtered vectors. According to the developed intermediate variables, the parameter identification error data can be obtained. Thereafter, an adaptive estimator is established by integrating the identification error data compared with the classic adaptive estimator based on the prediction error output information. Thus, the design framework introduced in this research provides a new perspective for the design of identification algorithms. Under a general continuous excitation condition, the parameter estimation values can converge to the true values. Finally, experimental results and illustrative examples indicate the availability and usefulness of the proposed method.
引用
收藏
相关论文
共 50 条
  • [1] Adaptive parameter estimation for the expanded sandwich model
    Yang, Guanglu
    Zhang, Huanlong
    Liu, Yubao
    Sun, Qingling
    Qiao, Jianwei
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [2] Parameter estimation of inhomogeneous AR model expanded with unknown basis
    Yokoyama, Y
    Kumazawa, M
    Mikami, N
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1999, E82A (08) : 1582 - 1587
  • [3] Adaptive anisotropic parameter estimation in the weak membrane model
    Kubota, T
    Huntsberger, T
    ENERGY MINIMIZATION METHODS IN COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 1997, 1223 : 179 - 194
  • [4] Robust adaptive model predictive control: Performance and parameter estimation
    Lu, Xiaonan
    Cannon, Mark
    Koksal-Rivet, Denis
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2021, 31 (18) : 8703 - 8724
  • [5] Study of Adaptive Model Parameter Estimation for Milling Tool Wear
    Xu, Chuangwen
    Xu, Ting
    Zhu, Qi
    Zhang, Hongyan
    STROJNISKI VESTNIK-JOURNAL OF MECHANICAL ENGINEERING, 2011, 57 (7-8): : 568 - 578
  • [6] Multiple Model Adaptive Estimation Algorithm for Systems with Parameter Change
    Soken, Halil Ersin
    Sakai, Shin-ichiro
    2016 55TH ANNUAL CONFERENCE OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS OF JAPAN (SICE), 2016, : 1718 - 1723
  • [7] Image magnification based on adaptive MRF model parameter estimation
    Zhang, XL
    Lam, KM
    Shen, LS
    ISPACS 2005: PROCEEDINGS OF THE 2005 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATION SYSTEMS, 2005, : 653 - 656
  • [8] Parameter Estimation of GTD Model using Iterative Adaptive Approach
    Hu, Pengjiang
    Xu, Shiyou
    Zou, Jiangwei
    Chen, Zengping
    2017 IEEE SENSORS, 2017, : 397 - 399
  • [9] Adaptive estimation of location parameter
    Simakhin, Valerii A.
    Cherepanov, Oleg S.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-UPRAVLENIE VYCHISLITELNAJA TEHNIKA I INFORMATIKA-TOMSK STATE UNIVERSITY JOURNAL OF CONTROL AND COMPUTER SCIENCE, 2013, 22 (01): : 131 - 137
  • [10] Adaptive Parameter Robust Estimation
    Mohammed, Dhafar S.
    Habibi, Saeid
    Prokhorov, Danil
    2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8, 2008, : 2948 - +