Adaptive parameter estimation for the expanded sandwich model

被引:0
|
作者
Guanglu Yang
Huanlong Zhang
Yubao Liu
Qingling Sun
Jianwei Qiao
机构
[1] Nanyang Cigarette Factory of Henan China Tobacco Industry Co.,College of Electrical and Information Engineering
[2] Ltd,undefined
[3] Zhengzhou University of Light Industry,undefined
[4] Wolong Electric Nanyang explosion proof motor Group Co.,undefined
[5] Ltd,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
An expanded-sandwich system is a nonlinear extended block-oriented system in which memoryless elements in conventional block-oriented systems are displaced by memory submodels. Expanded-sandwich system identification has received extensive attention in recent years due to the powerful ability of these systems to describe actual industrial systems. This study proposes a novel recursive identification algorithm for an expanded-sandwich system, in which an estimator is developed on the basis of parameter identification error data rather than the traditional prediction error output information. In this scheme, a filter is introduced to extract the available system information based on miserly structure layout, and some intermediate variables are designed using filtered vectors. According to the developed intermediate variables, the parameter identification error data can be obtained. Thereafter, an adaptive estimator is established by integrating the identification error data compared with the classic adaptive estimator based on the prediction error output information. Thus, the design framework introduced in this research provides a new perspective for the design of identification algorithms. Under a general continuous excitation condition, the parameter estimation values can converge to the true values. Finally, experimental results and illustrative examples indicate the availability and usefulness of the proposed method.
引用
收藏
相关论文
共 50 条
  • [31] Adaptive Parameter Estimation of Power System Dynamic Model Using Modal Information
    Guo, Song
    Norris, Sean
    Bialek, Janusz
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2014, 29 (06) : 2854 - 2861
  • [32] Adaptive model based parameter estimation, based on sparse data and frequency derivatives
    Deschrijver, D
    Dhaene, T
    Broeckhove, J
    COMPUTATIONAL SCIENCE - ICCS 2004, PT 2, PROCEEDINGS, 2004, 3037 : 443 - 450
  • [33] SOC Estimation with an Adaptive Unscented Kalman Filter Based on Model Parameter Optimization
    Guo, Xiangwei
    Xu, Xiaozhuo
    Geng, Jiahao
    Hua, Xian
    Gao, Yan
    Liu, Zhen
    APPLIED SCIENCES-BASEL, 2019, 9 (19):
  • [34] The Impact of Item Model Parameter Variations on Person Parameter Estimation in Computerized Adaptive Testing With Automatically Generated Items
    Tian, Chen
    Choi, Jaehwa
    APPLIED PSYCHOLOGICAL MEASUREMENT, 2023, 47 (04) : 275 - 290
  • [35] Design of auxiliary model and hierarchical normalized fractional adaptive algorithms for parameter estimation of bilinear-in-parameter systems
    Zhu, Yancheng
    Wu, Huaiyu
    Chen, Zhihuan
    Chen, Yang
    Zheng, Xiujuan
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2022, 36 (10) : 2562 - 2584
  • [36] Adaptive Input and Parameter Estimation with Application to Engine Torque Estimation
    Na, Jing
    Herrmann, Guido
    Burke, Richard
    Brace, Chris
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 3687 - 3692
  • [37] Adaptive Parameter Estimation with Guaranteed Prescribed Performance
    Yang, Juan
    Na, Jing
    Wu, Xing
    Guo, Yu
    26TH CHINESE CONTROL AND DECISION CONFERENCE (2014 CCDC), 2014, : 2515 - 2520
  • [38] Adaptive parameter estimation for microbial growth kinetics
    Zhang, T
    Guay, M
    AICHE JOURNAL, 2002, 48 (03) : 607 - 616
  • [39] Recursive algorithms for parameter estimation with adaptive quantizer
    You, Keyou
    AUTOMATICA, 2015, 52 : 192 - 201
  • [40] Robust adaptive parameter estimation of sinusoidal signals
    Na, Jing
    Yang, Juan
    Wu, Xing
    Guo, Yu
    AUTOMATICA, 2015, 53 : 376 - 384