Adaptive Parameter Estimation of Power System Dynamic Model Using Modal Information

被引:30
|
作者
Guo, Song [1 ]
Norris, Sean [2 ]
Bialek, Janusz [2 ]
机构
[1] London Power Associates Ltd, Manchester, Lancs, England
[2] Univ Durham, Sch Engn & Comp Sci, Durham, England
基金
英国工程与自然科学研究理事会;
关键词
Dynamic power system modeling; parameter estimation; small signal analysis; synchronous generators; wide area measurements; ROBUST RLS METHODS; ONLINE ESTIMATION; ELECTROMECHANICAL MODES;
D O I
10.1109/TPWRS.2014.2316916
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel method for estimating parameters of a dynamic system model is presented using estimates of dynamic system modes (frequency and damping) obtained from wide area measurement systems (WAMS). The parameter estimation scheme is based on weighted least squares (WLS) method that utilizes sensitivities of the measured modal frequencies and damping to the parameters. The paper concentrates on estimating the values of generator inertias but the proposed methodology is general and can be used to identify other generator parameters such as damping coefficients. The methodology has been tested using a wide range of accuracy in the measured modes of oscillations. The results suggest that the methodology is capable of estimating accurately inertias and replicating the dynamic behavior of the power system. It has been shown that the damping measurements do not influence estimation of generator inertia. The method has overcome the problem of observability, when there were fewer measurements than the parameters to be estimated, by including the assumed values of parameters as pseudo-measurements.
引用
收藏
页码:2854 / 2861
页数:8
相关论文
共 50 条
  • [1] Modal Parameter Estimation of Model Steel Bridge Using System Identification Methods
    Ozcelik, Ozgur
    Gundogan, Merve
    Kahraman, Serap
    TEKNIK DERGI, 2013, 24 (03): : 6471 - 6478
  • [2] Parameter estimation for dynamic model of the financial system
    Novotna, Veronika
    Stepankova, Vladena
    18TH INTERNATIONAL CONFERENCE ENTERPRISE AND COMPETITIVE ENVIRONMENT, 2015, : 628 - 635
  • [3] Spatial Information in Autonomous Modal Parameter Estimation
    Allemang, Randall J.
    Phillips, Allyn W.
    SHOCK AND VIBRATION, 2014, 2014
  • [4] Parameter Estimation of Dynamic Vapor Compression System Models Using Limited Sensor Information
    Hariharan, Natarajkumar
    Rasmussen, Bryan P.
    ASHRAE TRANSACTIONS 2011, VOL 117, PT 2, 2011, 117 : 746 - 758
  • [5] Modal parameter estimation and model order selection of a randomly vibrating system
    Univ of Franche-Comte, Besancon, France
    Mech Syst Signal Process, 6 (825-838):
  • [6] Modal parameter estimation and model order selection of a randomly vibrating system
    Lardies, J
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 1998, 12 (06) : 825 - 838
  • [7] Modal Parameter Estimation using Synchrophasors
    Fraschini, Agustin
    Sena, Celia
    2015 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES LATIN AMERICA (ISGT LATAM), 2015, : 503 - 507
  • [8] DYNAMIC POWER SYSTEM LOAD MODELING BY PARAMETER-ESTIMATION
    MEYER, FJ
    LEE, KY
    ELECTRIC POWER SYSTEMS RESEARCH, 1984, 7 (03) : 231 - 241
  • [9] Dynamic State Estimation for Power System Control and Protection IEEE Task Force on Power System Dynamic State and Parameter Estimation
    Liu, Yu
    Singh, Abhinav Kumar
    Zhao, Junbo
    Meliopoulos, A. P. Sakis
    Pal, Bikash
    Ariff, Mohd Aifaa bin Mohd
    Van Cutsem, Thierry
    Glavic, Mevludin
    Huang, Zhenyu
    Kamwa, Innocent
    Mili, Lamine
    Mir, Abdul Saleem
    Taha, Ahmad
    Terzija, Vladimir
    Yu, Shenglong
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2021, 36 (06) : 5909 - 5921
  • [10] Dynamic state estimation in power system based on integrated forecasting model and adaptive filter
    Han, Li
    Han, Xueshan
    Chen, Fang
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2008, 23 (08): : 107 - 113