Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor

被引:270
|
作者
Schmitt, Simon [1 ]
Gefen, Tuvia [2 ]
Stuerner, Felix M. [1 ]
Unden, Thomas [1 ]
Wolff, Gerhard [1 ]
Mueller, Christoph [1 ]
Scheuer, Jochen [1 ,3 ]
Naydenov, Boris [1 ,3 ]
Markham, Matthew [4 ]
Pezzagna, Sebastien [5 ]
Meijer, Jan [5 ]
Schwarz, Ilai [3 ,6 ]
Plenio, Martin B. [3 ,6 ]
Retzker, Alex [2 ]
McGuinness, Liam P. [1 ]
Jelezko, Fedor [1 ,3 ]
机构
[1] Ulm Univ, Inst Quantum Opt, D-89081 Ulm, Germany
[2] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
[3] Ulm Univ, Ctr Integrated Quantum Sci & Technol IQST, D-89081 Ulm, Germany
[4] Element Six, Harwell Campus,Fermi Ave, Didcot OX11 0QR, Oxon, England
[5] Univ Leipzig, Felix Bloch Inst Solid State Phys, D-04103 Leipzig, Germany
[6] Ulm Univ, Inst Theoret Phys, D-89069 Ulm, Germany
基金
欧洲研究理事会; 以色列科学基金会;
关键词
SPIN; RESONANCE; TIME;
D O I
10.1126/science.aam5532
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Precise timekeeping is critical to metrology, forming the basis by which standards of time, length, and fundamental constants are determined. Stable clocks are particularly valuable in spectroscopy because they define the ultimate frequency precision that can be reached. In quantum metrology, the qubit coherence time defines the clock stability, from which the spectral linewidth and frequency precision are determined. We demonstrate a quantum sensing protocol in which the spectral precision goes beyond the sensor coherence time and is limited by the stability of a classical clock. Using this technique, we observed a precision in frequency estimation scaling in time T as T-3/2 for classical oscillating fields. The narrow linewidth magnetometer based on single spins in diamond is used to sense nanoscale magnetic fields with an intrinsic frequency resolution of 607 microhertz, which is eight orders of magnitude narrower than the qubit coherence time.
引用
收藏
页码:832 / 836
页数:5
相关论文
共 50 条
  • [41] Magnetization and magnetic susceptibility in nanoscale vertically coupled semiconductor quantum rings
    Li Y.
    Journal of Computational Electronics, 2005, 4 (1-2) : 135 - 138
  • [42] Quantum colliding of nanoscale solitons in a domain wall of magnetic stripe domain
    Shevchenko, A. B.
    Barabash, M. Yu.
    APPLIED NANOSCIENCE, 2019, 9 (05) : 595 - 599
  • [43] Comment on "Josephson current through a nanoscale magnetic quantum dot" - Reply
    Siano, F
    Egger, R
    PHYSICAL REVIEW LETTERS, 2005, 94 (22)
  • [44] Quantum Oscillations of the Nanoscale Structural Inhomogeneities of the Domain Wall in Magnetic Bubble
    A. B. Shevchenko
    M. Yu Barabash
    Nanoscale Research Letters, 2015, 10
  • [45] Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register
    Jakobi, Ingmar
    Neumann, Philipp
    Wang, Ya
    Dasari, Durga Bhaktavatsala Rao
    El Hallak, Fadi
    Bashir, Muhammad Asif
    Markham, Matthew
    Edmonds, Andrew
    Twitchen, Daniel
    Wrachtrupu, Joerg
    NATURE NANOTECHNOLOGY, 2017, 12 (01) : 67 - 72
  • [46] Quantum control of proximal spins using nanoscale magnetic resonance imaging
    Grinolds M.S.
    Maletinsky P.
    Hong S.
    Lukin M.D.
    Walsworth R.L.
    Yacoby A.
    Nature Physics, 2011, 7 (9) : 687 - 692
  • [47] Mesoscopic Magnetic Resonance Spectroscopy with a Remote Spin Sensor
    Xie, Tianyu
    Shi, Fazhan
    Chen, Sanyou
    Guo, Maosen
    Chen, Yisheng
    Zhang, Yixing
    Yang, Yu
    Gao, Xingyu
    Kong, Xi
    Wang, Pengfei
    Tateishi, Kenichiro
    Uesaka, Tomohiro
    Wang, Ya
    Zhang, Bo
    Du, Jiangfeng
    PHYSICAL REVIEW APPLIED, 2018, 9 (06):
  • [48] Nanoscale hydrogen sensor
    不详
    MATERIALS PERFORMANCE, 2001, 40 (11) : 11 - 11
  • [49] Magnetic field imaging by hBN quantum sensor nanoarray
    Sasaki, Kento
    Nakamura, Yuki
    Gu, Hao
    Tsukamoto, Moeta
    Nakaharai, Shu
    Iwasaki, Takuya
    Watanabe, Kenji
    Taniguchi, Takashi
    Ogawa, Shinichi
    Morita, Yukinori
    Kobayashi, Kensuke
    APPLIED PHYSICS LETTERS, 2023, 122 (24)
  • [50] Quantum entanglement distribution using a magnetic field sensor
    Schaffry, M.
    Benjamin, S. C.
    Matsuzaki, Y.
    NEW JOURNAL OF PHYSICS, 2012, 14