Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor

被引:270
|
作者
Schmitt, Simon [1 ]
Gefen, Tuvia [2 ]
Stuerner, Felix M. [1 ]
Unden, Thomas [1 ]
Wolff, Gerhard [1 ]
Mueller, Christoph [1 ]
Scheuer, Jochen [1 ,3 ]
Naydenov, Boris [1 ,3 ]
Markham, Matthew [4 ]
Pezzagna, Sebastien [5 ]
Meijer, Jan [5 ]
Schwarz, Ilai [3 ,6 ]
Plenio, Martin B. [3 ,6 ]
Retzker, Alex [2 ]
McGuinness, Liam P. [1 ]
Jelezko, Fedor [1 ,3 ]
机构
[1] Ulm Univ, Inst Quantum Opt, D-89081 Ulm, Germany
[2] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
[3] Ulm Univ, Ctr Integrated Quantum Sci & Technol IQST, D-89081 Ulm, Germany
[4] Element Six, Harwell Campus,Fermi Ave, Didcot OX11 0QR, Oxon, England
[5] Univ Leipzig, Felix Bloch Inst Solid State Phys, D-04103 Leipzig, Germany
[6] Ulm Univ, Inst Theoret Phys, D-89069 Ulm, Germany
基金
欧洲研究理事会; 以色列科学基金会;
关键词
SPIN; RESONANCE; TIME;
D O I
10.1126/science.aam5532
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Precise timekeeping is critical to metrology, forming the basis by which standards of time, length, and fundamental constants are determined. Stable clocks are particularly valuable in spectroscopy because they define the ultimate frequency precision that can be reached. In quantum metrology, the qubit coherence time defines the clock stability, from which the spectral linewidth and frequency precision are determined. We demonstrate a quantum sensing protocol in which the spectral precision goes beyond the sensor coherence time and is limited by the stability of a classical clock. Using this technique, we observed a precision in frequency estimation scaling in time T as T-3/2 for classical oscillating fields. The narrow linewidth magnetometer based on single spins in diamond is used to sense nanoscale magnetic fields with an intrinsic frequency resolution of 607 microhertz, which is eight orders of magnitude narrower than the qubit coherence time.
引用
收藏
页码:832 / 836
页数:5
相关论文
共 50 条
  • [31] Spin spectroscopy and coherence in magnetic quantum structures
    Awschalom, DD
    Samarth, N
    DYNAMICAL PROPERTIES OF UNCONVENTIONAL MAGNETIC SYSTEMS, 1998, 349 : 179 - 201
  • [32] Synthesis, Spectroscopy, and Magnetic Characterizations of PVP-Assisted Nanoscale Particle
    Sagayaraj, R.
    Aravazhi, S.
    Chandrasekaran, G.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2018, 31 (10) : 3379 - 3386
  • [33] Anelastic spectroscopy measurements of nanoscale charge and magnetic structures in cuprates and manganites
    Cordero, F
    Paolone, A
    Castellano, C
    Cantelli, R
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 370 (1-2): : 346 - 351
  • [34] Towards Chemical Structure Resolution with Nanoscale Nuclear Magnetic Resonance Spectroscopy
    Kong, Xi
    Stark, Alexander
    Du, Jiangfeng
    McGuinness, Liam P.
    Jelezko, Fedor
    PHYSICAL REVIEW APPLIED, 2015, 4 (02):
  • [35] Synthesis, Spectroscopy, and Magnetic Characterizations of PVP-Assisted Nanoscale Particle
    R. Sagayaraj
    S. Aravazhi
    G. Chandrasekaran
    Journal of Superconductivity and Novel Magnetism, 2018, 31 : 3379 - 3386
  • [36] Mn-Doped ZnS Quantum dots-An Effective Nanoscale Sensor
    Patel, Jyoti
    Jain, Bhawana
    Singh, Ajaya K.
    Susan, Md Abu Bin Hasan
    Jean-Paul, Lellouche
    MICROCHEMICAL JOURNAL, 2020, 155
  • [37] Nanoscale Detection of Magnon Excitations with Variable Wavevectors Through a Quantum Spin Sensor
    Lee-Wong, Eric
    Xue, Ruolan
    Ye, Feiyang
    Kreisel, Andreas
    van Der Sar, Toeno
    Yacoby, Amir
    Du, Chunhui Rita
    NANO LETTERS, 2020, 20 (05) : 3284 - 3290
  • [38] Quantum control of proximal spins using nanoscale magnetic resonance imaging
    Grinolds, M. S.
    Maletinsky, P.
    Hong, S.
    Lukin, M. D.
    Walsworth, R. L.
    Yacoby, A.
    NATURE PHYSICS, 2011, 7 (09) : 687 - 692
  • [39] Quantum colliding of nanoscale solitons in a domain wall of magnetic stripe domain
    A. B. Shevchenko
    M. Yu. Barabash
    Applied Nanoscience, 2019, 9 : 595 - 599
  • [40] Quantum Oscillations of the Nanoscale Structural Inhomogeneities of the Domain Wall in Magnetic Bubble
    Shevchenko, A. B.
    Barabash, M. Yu
    NANOSCALE RESEARCH LETTERS, 2015, 10 : 1 - 5