Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor

被引:270
|
作者
Schmitt, Simon [1 ]
Gefen, Tuvia [2 ]
Stuerner, Felix M. [1 ]
Unden, Thomas [1 ]
Wolff, Gerhard [1 ]
Mueller, Christoph [1 ]
Scheuer, Jochen [1 ,3 ]
Naydenov, Boris [1 ,3 ]
Markham, Matthew [4 ]
Pezzagna, Sebastien [5 ]
Meijer, Jan [5 ]
Schwarz, Ilai [3 ,6 ]
Plenio, Martin B. [3 ,6 ]
Retzker, Alex [2 ]
McGuinness, Liam P. [1 ]
Jelezko, Fedor [1 ,3 ]
机构
[1] Ulm Univ, Inst Quantum Opt, D-89081 Ulm, Germany
[2] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
[3] Ulm Univ, Ctr Integrated Quantum Sci & Technol IQST, D-89081 Ulm, Germany
[4] Element Six, Harwell Campus,Fermi Ave, Didcot OX11 0QR, Oxon, England
[5] Univ Leipzig, Felix Bloch Inst Solid State Phys, D-04103 Leipzig, Germany
[6] Ulm Univ, Inst Theoret Phys, D-89069 Ulm, Germany
基金
欧洲研究理事会; 以色列科学基金会;
关键词
SPIN; RESONANCE; TIME;
D O I
10.1126/science.aam5532
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Precise timekeeping is critical to metrology, forming the basis by which standards of time, length, and fundamental constants are determined. Stable clocks are particularly valuable in spectroscopy because they define the ultimate frequency precision that can be reached. In quantum metrology, the qubit coherence time defines the clock stability, from which the spectral linewidth and frequency precision are determined. We demonstrate a quantum sensing protocol in which the spectral precision goes beyond the sensor coherence time and is limited by the stability of a classical clock. Using this technique, we observed a precision in frequency estimation scaling in time T as T-3/2 for classical oscillating fields. The narrow linewidth magnetometer based on single spins in diamond is used to sense nanoscale magnetic fields with an intrinsic frequency resolution of 607 microhertz, which is eight orders of magnitude narrower than the qubit coherence time.
引用
收藏
页码:832 / 836
页数:5
相关论文
共 50 条
  • [21] Comment on "Josephson current through a nanoscale magnetic quantum dot"
    Choi, MS
    Lee, M
    Kang, K
    Belzig, W
    PHYSICAL REVIEW LETTERS, 2005, 94 (22)
  • [22] Nanoscale cathodoluminescence spectroscopy probing the nitride quantum wells in an electron microscope
    Liu, Zhetong
    Liu, Bingyao
    Liang, Dongdong
    Li, Xiaomei
    Li, Xiaomin
    Chen, Li
    Zhu, Rui
    Xu, Jun
    Wei, Tongbo
    Bai, Xuedong
    Gao, Peng
    CHINESE PHYSICS B, 2024, 33 (03)
  • [23] A Novel AMR Magnetic Sensor Utilizing Nanoscale Magnetic-Domain Transformation.
    Chen, Y.
    Yeh, P.
    Chung, T.
    2015 IEEE MAGNETICS CONFERENCE (INTERMAG), 2015,
  • [24] Nanoscale cathodoluminescence spectroscopy probing the nitride quantum wells in an electron microscope
    刘哲彤
    刘秉尧
    梁冬冬
    李晓梅
    李晓敏
    陈莉
    朱瑞
    徐军
    魏同波
    白雪冬
    高鹏
    ChinesePhysicsB, 2024, 33 (03) : 172 - 177
  • [25] SPECTROSCOPY Nanoscale terahertz spectroscopy
    Shigekawa, Hidemi
    Yoshida, Shoji
    Takeuchi, Osamu
    NATURE PHOTONICS, 2014, 8 (11) : 815 - 817
  • [26] Nanoscale Nuclear Magnetic Resonance with a Nitrogen-Vacancy Spin Sensor
    Mamin, H. J.
    Kim, M.
    Sherwood, M. H.
    Rettner, C. T.
    Ohno, K.
    Awschalom, D. D.
    Rugar, D.
    SCIENCE, 2013, 339 (6119) : 557 - 560
  • [27] Nanoscale Mapping of Magnetic Auto-Oscillations with a Single Spin Sensor
    Hache, Toni
    Anshu, Anshu
    Shalomayeva, Tetyana
    Richter, Gunther
    Stoehr, Rainer
    Kern, Klaus
    Wrachtrup, Joerg
    Singha, Aparajita
    NANO LETTERS, 2025, 25 (05) : 1917 - 1924
  • [28] Nonlocally sensing the magnetic states of nanoscale antiferromagnets with an atomic spin sensor
    Yan, Shichao
    Malavolti, Luigi
    Burgess, Jacob A. J.
    Droghetti, Andrea
    Rubio, Angel
    Loth, Sebastian
    SCIENCE ADVANCES, 2017, 3 (05):
  • [29] Nanoscale Electrometry Based on a Magnetic-Field-Resistant Spin Sensor
    Li, Rui
    Kong, Fei
    Zhao, Pengju
    Cheng, Zhi
    Qin, Zhuoyang
    Wang, Mengqi
    Zhang, Qi
    Wang, Pengfei
    Wang, Ya
    Shi, Fazhan
    Du, Jiangfeng
    PHYSICAL REVIEW LETTERS, 2020, 124 (24)
  • [30] Quantum information processing by nuclear magnetic spectroscopy
    Havel, TF
    Cory, DG
    Lloyd, S
    Boulant, N
    Fortunato, EM
    Pravia, MA
    Teklemariam, G
    Weinstein, YS
    Bhattacharyya, A
    Hou, J
    AMERICAN JOURNAL OF PHYSICS, 2002, 70 (03) : 345 - 362