Quantum entanglement distribution using a magnetic field sensor

被引:4
|
作者
Schaffry, M. [1 ]
Benjamin, S. C. [1 ,2 ]
Matsuzaki, Y. [1 ]
机构
[1] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
[2] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
来源
NEW JOURNAL OF PHYSICS | 2012年 / 14卷
基金
新加坡国家研究基金会;
关键词
NANOSCALE RESOLUTION; NUCLEAR-SPIN; DIAMOND; COMPUTATION; NANODIAMONDS; CENTERS; QUBITS; STATE;
D O I
10.1088/1367-2630/14/2/023046
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Sensors based on crystal defects, especially nitrogen vacancy (NV) centres in nanodiamond, can achieve detection of single magnetic moments. Here, we show that this exquisite control can be utilized to entangle remote electronic spins for applications in quantum computing; the mobile sensor provides a 'flying' qubit while the act of sensing the local field constitutes a two-qubit projective measurement. Thus, the NV centre mediates entanglement between an array of well-separated (and thus well-controlled) qubits. Our calculations establish that such a device would be remarkably robust against realistic issues such as dephasing, inaccurate timing and both positioning errors and multimodal vibrations in the sensor tip. Interestingly, the fact that this form of flying qubit is readily measurable allows one to convert certain classes of unknown errors into heralded failures, which are relatively easy to deal with using established quantum information processing techniques. We also provide calculations establishing the feasibility of performing a demonstrator experiment with a fixed sensor in the immediate future.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Proposed Robust Entanglement-Based Magnetic Field Sensor Beyond the Standard Quantum Limit
    Tanaka, Tohru
    Knott, Paul
    Matsuzaki, Yuichiro
    Dooley, Shane
    Yamaguchi, Hiroshi
    Munro, William J.
    Saito, Shiro
    PHYSICAL REVIEW LETTERS, 2015, 115 (17)
  • [2] Quantum entanglement in a two-electron quantum dot in magnetic field
    R. G. Nazmitdinov
    A. V. Chizhov
    Optics and Spectroscopy, 2012, 112 : 319 - 322
  • [3] Quantum Entanglement in a Two-Electron Quantum Dot in Magnetic Field
    Nazmitdinov, R. G.
    Chizhov, A. V.
    OPTICS AND SPECTROSCOPY, 2012, 112 (03) : 319 - 322
  • [4] Magnetic field distribution of magnetic encoder with TMR sensor using finite element analysis
    Yirga Belay Muna
    Cheng-Chien Kuo
    Microsystem Technologies, 2020, 26 : 2683 - 2701
  • [5] Magnetic field distribution of magnetic encoder with TMR sensor using finite element analysis
    Belay Muna, Yirga
    Kuo, Cheng-Chien
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2020, 26 (08): : 2683 - 2701
  • [6] Unsymmetrical quantum key distribution using tripartite entanglement
    Xiong Jin
    Zhang Zhe-Shen
    Zhou Nan-Run
    Peng Jin-Ye
    Zeng Gui-Hua
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2007, 47 (03) : 441 - 445
  • [8] Counterfactual entanglement distribution using quantum dot spins
    Chen, Yuanyuan
    Jiang, Dong
    Gu, Xuemei
    Xie, Ling
    Chen, Lijun
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2016, 33 (04) : 663 - 669
  • [9] Field-of-View-Breaking Localization of Magnetic Source Using Quantum Sensor
    Liu, Yanjie
    Hao, Wenyuan
    Wen, Huan Fei
    Gao, Ziheng
    Wang, Ding
    Li, Xin
    Li, Zhonghao
    Guo, Hao
    Ma, Zongmin
    Tang, Jun
    Liu, Jun
    IEEE SENSORS JOURNAL, 2023, 23 (23) : 28812 - 28820
  • [10] An orbital entanglement in two-electron quantum dots in a magnetic field
    Chizhov, A.
    Nazmitdinov, R. G.
    INTERNATIONAL CONFERENCE ON THEORETICAL PHYSICS DUBNA-NANO 2010, 2010, 248